[笔记] prufer 序列】的更多相关文章

前言 PKUWC和NOIWC都考察了prufer序列,结果统统爆零 prufer序列就是有标号生成树对序列的映射 prufer序列生成 每次选择编号最小的叶子删掉,把叶子的父亲加入prufer序列,直到剩下2个点 set维护叶子,nlogn prufer序列还原 用set维护没有在剩余prufer序列中的点,不断取出prufer序列首项A,和set中最小的编号连边.然后删除两个点.(如果A在剩下的prufer序列不存在了,就加入set) 摘自百度百科: 性质 来自:https://www.cnb…
什么是 prufer 序列 是可以和 \(n\) 个有标号节点的无根树一一对应的长度为 \(n-2\) 的序列. 一般来说是用于和树相关的组合计数问题,但是可能会出现一些变形,所以除了要了解一些性质,大致的构造思路也要知道. 如何构建 prufer 序列 每次选择一个编号最小的叶结点并删掉它,然后在序列中记录下它连接到的那个结点. 重复 \(n-2\) 次后就只剩下两个结点,算法结束. 如何还原 prufer 序列 每次选择一个度数为 \(1\) 的最小的结点编号,与当前枚举到的 Prufer…
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.net/morejarphone/article/details/50677172 因为是偶然翻了他的这篇博文,然后就秒会了. prufer数列,可以用来解一些关于无根树计数的问题. prufer数列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的prufer编码. (…
prufer序列 度娘的定义 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2. 对于一棵确定的无根树,对应着唯一确定的prufer序列 构造方法 无根树转化为prufer序列 找到编号最小的度数为\(1\)的点 删除该节点并在序列中添加与该节点相连的节点的编号 重复\(1,2\)操作,直到整棵树只剩下两个节点 如下图的prufer序列为\(3,5,1,3\) prufer序列转化为无根树…
prufer序列是一个定义在无根树上的东西. 构造方法是:每次选一个编号最小的叶子结点,把他的父亲的编号加入到序列的最后.然后删掉这个叶节点.直到最后只剩下两个节点,此时得到的序列就是prufer序列. 这个构造可以用优先队列做到 $O(n\log n)$. 至于如何用prufer序列反推出树,我还有点没看懂怎么 $O(n\log n)$,以后看懂了再来填坑吧. prufer序列的一些性质: 一棵 $n$ 个点的无根树prufer序列长度为 $n-2$. 无根树和prufer序列一一对应,一个无…
prufer 序列是一种无根树的序列,对于一个 \(n\) 个点的树,其 prufer 序列的长度为 \(n-2\). prufer 序列和原树之间都可以唯一地相互转化. 构造 构造 prufer 序列分为如下的步骤: 找到一个编号最小的度数为 \(1\) 的点: 将与这个点相邻的点的编号加入 prufer 序列的后面: 删除这个点: 重复上述步骤,知道原树只剩下 \(2\) 个点,这两个点之间应该有一条边. 还原 令集合 \(V = \{1, 2, \cdots, n\}\). 取出 pruf…
[容斥原理] 对于统计指定排列方案数的问题,一个方案是空间中的一个元素. 定义集合x是满足排列中第x个数的限定条件的方案集合,设排列长度为S,则一共S个集合. 容斥原理的本质是考虑[集合交 或 集合交的补集]和[集合并 或 集合并的补集]之间相互转化的问题. 定义目标函数为f(m),已知函数g(T).(例如已知集合并,则T表示所有T个集合的集合并,通常g(T)=C(n,T)*T个集合的集合并) 当两者都不是补集或两者都是补集时,有f(S)=Σ(-1)|T|-1g(T),其中T为S的非空子集,即奇…
原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.net/morejarphone/article/details/50677172 因为是偶然翻了他的这篇博文,然后就秒会了. pruf…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1430 题解 prufer 序列模板题. 一个由 \(n\) 个点构成的有标号无根树的个数为 \(n^{n-2}\). 证明就是 prufer 序列,可以看我的学习笔记. https://www.cnblogs.com/hankeke/p/prufer.html 然后因为一棵树的加边顺序随意,所以还需要乘上 \((n-1)!\). 所以最后答案为 \(n^{n-2}(n-1)!\). #inc…
两道题目大意都是根据每个点的度数来构建一棵无根树来确定有多少种构建方法 这里构建无根树要用到的是prufer序列的知识 先很无耻地抄袭了一段百度百科中的prufer序列的知识: 将树转化成Prufer数列的方法 一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点.对于一棵顶点已经经过编号的树T,顶点的编号为{1,2,...,n},在第i步时,移去所有叶子节点(度为1的顶点)中标号最小的顶点和相连的边,并把与它相邻的点的编号加入Prufer序列中,重复以上步骤直到原图仅剩2个顶点. 例子…