一次spark任务提交参数的优化】的更多相关文章

来源:https://www.cnblogs.com/arachis/p/spark_parameters.html 摘要 1.num-executors 2.executor-memory 3.executor-cores 4.driver-memory 5.spark.default.parallelism 6.spark.storage.memoryFraction 7.spark.shuffle.memoryFraction 8.total-executor-cores 9.资源参数参考…
当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit --master yarn-cluster   #使用集群调度模式(一般使用这个参数) --num-executors  132      # executor 数量 --executor-cores  2        #设置单个executor能并发执行task数,根据job设置,推荐值2-16 (…
问题一:有哪些资源可以分配给spark作业使用? 答案:executor个数,cpu per exector(每个executor可使用的CPU个数),memory per exector(每个executor可使用的内存),driver memory 问题二:在什么地方分配资源给spark作业? 答案:很简单,就是在我们提交spark作业的时候的脚本中设定,具体如下(这里以我的项目为例) /usr/local/spark/bin/spark-submit \ --class  com.xing…
第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和OneToOneDependency四种依赖关系.如下图所示:org.apache.spark.Dependency有两个一级子类,分别是 ShuffleDependency 和 NarrowDependency.其中,NarrowDependency 是一个抽象类,它有三个实现类,分别是OneToO…
Spark Core 1. 概述 Spark 是一种基于内存的快速.通用.可扩展的大数据分析计算引擎 1.1 Hadoop vs Spark 上面流程对应Hadoop的处理流程,下面对应着Spark的处理流程 Hadoop Hadoop 是由 java 语言编写的,在分布式服务器集群上存储海量数据并运行分布式 分析应用的开源框架 作为 Hadoop 分布式文件系统,HDFS 处于 Hadoop 生态圈的最下层,存储着所有的 数 据 , 支持着 Hadoop的所有服务 . 它的理论基础源于Goog…
标签(空格分隔): Spark 作业提交 先回顾一下WordCount的过程: sc.textFile("README.rd").flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_+_) 步骤一:val rawFile = sc.textFile("README.rd") texyFile先生成HadoopRDD --> MappedRDD:…
Spark集群模式&Spark程序提交 1. 集群管理器 Spark当前支持三种集群管理方式 Standalone-Spark自带的一种集群管理方式,易于构建集群. Apache Mesos-通用的集群管理,可以在其上运行Hadoop MapReduce和一些服务应用. Hadoop YARN-Hadoop2中的资源管理器. Tip1: 在集群不是特别大,并且没有mapReduce和Spark同时运行的需求的情况下,用Standalone模式效率最高. Tip2: Spark可以在应用间(通过集…
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark-1.6 术语 Master(standalone):资源管理的主节点(进程) Cluster Manager:在集群上获取资源的外部服务(例如standalone,Mesos,Yarn ) Worker Node(standalone):资源管理的从节点(进程) 或者说管理本机资源的进程 Appl…
spark任务提交到yarn上命令总结 1. 使用spark-submit提交任务 集群模式执行 SparkPi 任务,指定资源使用,指定eventLog目录 spark-submit --class org.apache.spark.examples.SparkPi \ --master yarn \ --conf spark.eventLog.dir=hdfs://dbmtimehadoop/tmp/spark2 \ --deploy-mode cluster \ --driver-memo…
Driver spark.driver.cores driver端分配的核数,默认为1,thriftserver是启动thriftserver服务的机器,资源充足的话可以尽量给多. spark.driver.memory driver端分配的内存数,默认为1g,同上. spark.driver.maxResultSize driver端接收的最大结果大小,默认1GB,最小1MB,设置0为无限. 这个参数不建议设置的太大,如果要做数据可视化,更应该控制在20-30MB以内.过大会导致OOM. sp…