mapreduce分区】的更多相关文章

原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce   (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce2.Mapreduce中Par…
package com.my.hadoop.mapreduce.partition; import java.util.HashMap;import java.util.Map; import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import or…
1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce   (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce2.Mapreduce中Partition的概念以及使用.(1)Partition的原理和作用        得到map给的记录后,…
一.排序 排序: 需求:根据用户每月使用的流量按照使用的流量多少排序 接口-->WritableCompareable 排序操作在hadoop中属于默认的行为.默认按照字典殊勋排序. 排序的分类: 1)部分排序 2)全排序 3)辅助排序 4)二次排序 Combiner 合并 父类Reducer 局部汇总 ,减少网络传输量 ,进而优化程序. 注意:求平均值? 3 5 7 2 6 mapper: (3 + 5 + 7)/3 = 5 (2 + 6)/2 = 4 reducer:(5+4)/2 只能应用…
MapReduce中的分区默认是哈希分区,根据map输出key的哈希值做模运算,如下 int result = key.hashCode()%numReduceTask; 如果我们需要根据业务需求来将map读入的数据按照某些特定条件写入不同的文件,那就需要自定义实现Partition,自定义规则 举个简单的例子,使用MapReduce做wordcount,但是需要根据单词的长度写入不同的文件中,单词的长度大于4的写入一个文件,小于等于4的写入另一个文件 代码结构如下 代码实现如下 MapTest…
转载:http://blog.tianya.cn/m/post.jsp?postId=53271442 1.MapReduce中数据流动 (1)最简单的过程:  map - reduce (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce 2.Mapreduce中Partiti…
本次分区是采用项目垃圾分类的csv文件,按照小于4的分为一个文件,大于等于4的分为一个文件 源代码: PartitionMapper.java: package cn.idcast.partition; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapre…
什么是数据倾斜? 数据不可避免的出现离群值,并导致数据倾斜,数据倾斜会显著的拖慢MR的执行速度 常见数据倾斜有以下几类 1.数据频率倾斜   某一个区域的数据量要远远大于其他区域 2.数据大小倾斜  一部分记录的大小远远大于平均值 解决数据倾斜的常用方法…
将user表计算后的结果分区存储 测试准备: 首先同步时间,然后master先开启hdfs集群,再开启yarn集群:用jps查看: master上: 先有NameNode.SecondaryNameNode;再有ResourceManager; slave上:   先有DataNode:再有NodeManager: 如果master启动hdfs和yarn成功,但是slave节点有的不成功,则可以使用如下命令手动启动: hadoop-daemon.sh start datanode yarn-da…
一.分区原理 1.为什么要分区?(这个借用别人的一段话来阐述.) 为了减少网络传输,需要增加cpu计算负载.数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变小文件, 从而减少网络传输,但是增加了cpu的计算负载. Spark里面io也是不可避免的,但是网络传输spark里面进行了优化.spark把rdd进行分区(分片),放在集群上并行计…