[Ctsc2002] Award 颁奖典礼 Description IOI2002的颁奖典礼将在YONG-IN Hall隆重举行.人们在经历了充满梦幻的世界杯之后变得更加富于情趣.为了使颁奖典礼更具魅力,有人建议在YONG-IN Hall中搭建一个I字型的颁奖台,以此代表信息学Informatics.考虑到比赛的赞助商们可能要在YONG-IN Hall中摆设了许多展示台,他们可能不愿意移动展示台的位置.你作为IOI2002的金牌得主自然地成为了他们求助的对象. YONG-IN Hall是一个矩形…
今天是因为David Lee正好讲这个题的类似题,我才做了一下. 本题是world final 2016的一道水…… 题目地址如下 http://www.lydsy.com/JudgeOnline/problem.php?id=4619. 这道题目让我们求为格式化所有硬盘所需要买的最小的额外空间. 这道题目很容易能看出来是一道贪心题目(据David Lee说还有一种做法是二分+贪心,不过qdez的师天硕stonepage和我Icontofig都觉得二分+贪心有些麻烦,然而stonepage不打算…
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为\(K\),求取法的方案数,答案模\(1000000007\). Input 一行两个整数\(N,K\) Output 一行为答案. HINK 对于\(100\%\)的数据,\(1≤N≤1000000,0≤K≤N\): 设交集拥有元素集合\(S\)的取法方案数为\(f(S)\),有 \[…
BZOJ 1367 [Baltic2004]sequence Description 给定一个序列\(t_1,t_2,\dots,t_N\),求一个递增序列\(z_1<z_2<\dots<z_N\),使得\(R=|t_1-z_1|+|t_2-z_2|+\dots+|t_N-z_N|\)的值最小,本题中,我们只需求出这个最小的\(R\)值 Input 第\(1\)行为\(N(1\le N\le10^6)\) 第\(2\)行到第\(N+1\)行,每行一个整数.第\(K+1\)行为\(t_k(…
来到机房刷了一道水(bian’tai)题.题目思想非常简单易懂(我的做法实际上参考了Evensgn 范学长,在此多谢范学长了) 题目摆上: 1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3162  Solved: 1182[Submit][Status][Discuss] Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个…
乍一看这个题好像可以二分优先度搞搞... 实际上能不能这么搞呢...? 我反正不会... 于是开始讲我的乱搞算法: 首先肯定要把任务按照优先度排序. 用一棵在线建点的线段树维护一个时刻是否在工作. 然后就依次插入任务,记为 i,具体而言就是二分其右端点,然后令这整个区间都变成 “工作” 的状态. 在 i 被插入之前,还要检验一下在当前情况那个神秘任务的右端点是不是题中所要求的那个. 如果是,并且 i-1 的优先度和 i 的优先度不相邻或者 i 就是最优先的任务,那么就令那个神秘任务的优先度为 i…
首先我们不能一位一位的考虑,为什么呢? 你想想,你如果一位一位地考虑的话,那么最后就只有 $n$ 个数字,然而他给了你 $2^n$ 个数字,怎么看都不对劲呀.(我是因为这样子弄没过样例才明白的) 所以我们还是要想想其他的方法. 我们是要算步数的期望,然而步数是一个离散的整数,所以我们可以把问题转化一下: $$E(s) = \sum_{k=1}^{\infty}P(s\ge k)$$ 然后就好做了嘛. 我们可以求出一个 $F_i = \sum_{j\subseteq i} p_j$,表示随机选一个…
这个题好神呀..Orz taorunz 有一个结论,这个结论感觉很优美: $$ans = \prod_{i=1}^{n}\varphi(i)$$ 至于为什么呢,大概是这样子的: 对于每个数字 $x$,第 $x$ 行有 $x - \varphi(x)$ 个数字不为 $1$,则说明这一行要被消 $x - \varphi(x)$ 次(别忘了每一行都会被 $1$ 给消一次),每次消元都会令 $A[x][x]$ 减一,所以 $A[x][x]$ 最后会变成 $\varphi(x)$,所以答案就是这个啦. 时…
首先,Alice 会选择一个长度为 $\lfloor\frac{n+1}{2}\rfloor$ 的区间,我们把这个长度记为 $len$. 有这么一个结论:令 $F_i$ 为覆盖 $i$ 点的所有长度为 $len$ 的区间的元素和的最小值,那么答案就是 $F_i$ 的最大值. 因为 Bob 可以控制 Alice 最后选择的是什么区间. [扯淡 ing]大概是这样子: 假设 Alice 一开始选择的是红色的点 $i$,并且蓝色的线以左所覆盖的区间和就是 $F_i$,那么对于 Bob,他就可以选择绿色…
这个题感觉比较小清新... 我们记录每个数出现的次数 $T_i$. 首先依次枚举每个数字,令 $ans = ans + T_i \times (T_i - 1)$,然后枚举这个数的倍数,令 $ans = ans + T_i \times T_{ki}$. 就做完啦~~ 令 $M$ 为其中最大的数字, 时间复杂度为 $O(n + M \log M)$,空间复杂度为 $O(M)$. #include <cstdio> typedef long long LL; #define N 2000000…