ORB-SLAM(八)ORBmatcher 特征匹配】的更多相关文章

之前我们已经介绍了SIFT算法,以及SURF算法,但是由于计算速度较慢的原因.人们提出了使用ORB来替代SIFT和SURF.与前两者相比,ORB有更快的速度.ORB在2011年才首次发布.在前面小节中,我们已经提到了ORB算法.ORB算法将基于FAST关键点的技术和基于BRIEF描述符的技术相结合,关于FAST和BRIEF相关内容可以参考博客第十四节.FAST角点检测(附源码)和第十六节.特征描述符BRIEF(附源码). 一 ORB算法原理 ORB算法将FAST特征点的检测方法和BRIEF特征描…
该类负责特征点与特征点之间,地图点与特征点之间通过投影关系.词袋模型或者Sim3位姿匹配.用来辅助完成单目初始化,三角化恢复新的地图点,tracking,relocalization以及loop closing,因此比较重要. 该类提供的API是: . 几个重载的SearchByProjection函数(第一个形参代表需要在其中寻找匹配点的当前图像帧/query:第二个形参则包含待匹配特征/train),用于 a. 跟踪局部地图(在局部地图中寻找与当前帧特征点匹配的).因为在TrackRefer…
转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/47606159 继上一篇中已经介绍了SIFT原理与C源代码剖析,最后得到了一系列特征点,每一个特征点相应一个128维向量.假如如今有两副图片都已经提取到特征点,如今要做的就是匹配上相似的特征点. 相似性查询有两种基本方式:1.范围查询:即给点查询点和查询阈值,从数据集中找出全部与查询点距离小于阈值的点. 2.K近邻查询:给点查询点及正整数K,从数据集中找到与查询点近期的K个数据…
ORBSLAM2匹配方法流程 在基于特征点的视觉SLAM系统中,特征匹配是数据关联最重要的方法.特征匹配为后端优化提供初值信息,也为前端提供较好的里程计信息,可见,若特征匹配出现问题,则整个视觉SLAM系统必然会崩掉.因此,本系列将特征匹配独立成一讲进行分析. ORBSLAM2中的匹配流程如下所述: 1. 计算当前帧描述子对应的BOW向量: 2. 设置匹配阈值: 3. 进行BOW特征向量匹配确定最优匹配: 4. 统计匹配描述子角度偏差并筛选,确定最终匹配. 接下来,我们一起再细细分析一下,每一步…
特征匹配(Feature Match)是计算机视觉中很多应用的基础,比如说图像配准,摄像机跟踪,三维重建,物体识别,人脸识别,所以花一些时间去深入理解这个概念是不为过的.本文希望通过一种通俗易懂的方式来阐述特征匹配这个过程,以及在过程中遇到的一些问题. 首先我通过几张图片来指出什么是特征匹配,以及特征匹配的过程. 图像一:彩色圆圈为图像的特征点 图像二: 图像一与图像二的匹配: 概念理解:什么是特征,什么是特征描述,什么是特征匹配 假设这样的一个场景,小白和小黑都在看一个图片,但是他们想知道他们…
一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点.计算机视觉领域中的很重要的图像特征匹配就是一特征点为基础而进行的,所以,如何定义和找出一幅图像中的特征点就非常重要.这篇文章我总结了视觉领域最常用的几种特征点以及特征匹配的方法. 在计算机视觉领域,兴趣点(也称关键点或特征点)的概念已经得 到了广泛的应用, 包括目标识别. 图像配准. 视觉跟踪. 三维重建 等. 这个概念的原理是, 从图像中选取某些特征点并对图像进行局部 分析,而非观察整幅图像. 只要图像中有足够…
SIFT算法是一种基于尺度空间的算法.利用SIFT提取出的特征点对旋转.尺度变化.亮度变化具有不变性,对视角变化.仿射变换.噪声也有一定的稳定性. SIFT实现特征的匹配主要包括四个步骤: 提取特征点 计算关特征点的描述子 利用描述子的相似程度对特征点进行匹配 消除误匹配点 1. 提取特征点 构建尺度空间:模拟图像的多尺度特征.经证实,唯一可能的尺度空间核是高斯函数.用L(x,y,σ)表示一幅图像的尺度空间,由可变尺度的高斯函数G(x,y,σ)和图像卷积产生,即,其中,(x,y)表示图像上的点,…
目标 在本章中, 我们将看到如何将一个图像中的特征与其他图像进行匹配. 我们将在OpenCV中使用Brute-Force匹配器和FLANN匹配器 Brute-Force匹配器的基础 蛮力匹配器很简单.它使用第一组中一个特征的描述符,并使用一些距离计算将其与第二组中的所有其他特征匹配.并返回最接近的一个. 对于BF匹配器,首先我们必须使用cv.BFMatcher()创建BFMatcher对象. 它需要两个可选参数.第一个是normType,它指定要使用的距离测量.默认情况下为cv.NORM_L2.…
OpenCV 中有两种特征匹配方法:暴力匹配 (Brute force matching) 和 最近邻匹配 (Nearest Neighbors matching) 它们都继承自 DescriptorMatcher,是基于特征描述符距离的匹配,根据描述符的不同,距离可以是 欧氏距离,也可以是 汉明距 1  暴力匹配 首先,任取图像 A 的一个特征描述符,计算它到图像 B 中所有特征描述符的距离:然后,将所得到的距离进行排序:最后,选择距离最短的特征,作为 A-B 的匹配点 1.1  BFMatc…
一直想基于传统图像匹配方式做一个融合Demo,也算是对上个阶段学习的一个总结. 由此,便采购了一个摄像头,在此基础上做了实时检测平面目标的特征匹配算法. 代码如下: # coding: utf-8 ''' @author: linxu @contact: 17746071609@163.com @time: 2021-07-26 上午11:54 @desc: 基于特征匹配的实时平面目标检测算法 @Ref: https://docs.opencv.org/3.0-beta/doc/py_tutor…