CF1043F Make It One 容斥+dp+组合】的更多相关文章

考试的时候考的一道题,感觉挺神的. 我们发现将所有数去重后最多只会选不到 $7$ 后 $gcd$ 就会变成 $1$. 令 $f[i][k]$ 表示选 $i$ 个数后 $gcd$ 为 $k$ 的方案数. 那么这 $i$ 个数中每个数都必须是 $k$ 的倍数. 令 $cnt[k]$ 为所有数中是 $k$ 的倍数的个数,这个可以在接近线性的时间内求出. 那么,选 $i$ 个数的总方案数位 $C_{cnt[k]}^{i}$,不和法的方案为这 $i$ 个数的 $gcd$ 是大于 $k$ 的,即 $k$ 的…
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/show/P4478 看到标题开始还以为是AHOI的小雪和小可可…… 题解:乍一看会40pts:测试点1.2:n,m<=1000的直接O(nm)DP:测试点3.4:没有障碍物直接C(n+m,n),然后p=1e6+3是质数可以直接取模. 想了几分钟会60pts:测试点5.6:模数可以拆成几个不超过1e…
题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith Lord Darth Vader. A powerful Force-user who lived during the era of the Galactic Empire, Marek originated from the Wookiee home planet of Kashyyyk as…
/** 题目:hdu6143 Killer Names 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6143 题意:有m种字符(可以不用完),组成两个长度为n的字符串,要求这两个字符串含有的字符没有相同的. 求有多少种方式组成这两个字符串. 思路:容斥+排列组合 反思一开始以为这题是dp,然后想了很久没想出来,觉得挺不好处理的,,能力不足. 后来想到是容斥. f[n][1]表示长度为n的字符串用1种字符填充的方法数. f[n][2] = 2^n -…
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相同. 还有输入应该是第二行是糖果,第三行是药片 题解:好吧这题不是神题,而是套路题,容斥+DP的套路在很多题中都用到过,不过我虽然知道套路,却被这题的第一步卡住了. 我们将两个序列从小到大排序. 好吧这步看起来可能很水,正常人看到无序的序列都会先想到排序,…
A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board, a chess want to go to the position (n,m) from the position (1,1). The chess is able to go to position (x2,y2) from the position (x1,y1), only and if…
[BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; #define MOD 1000000007 #define MAX 3000300 void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;} int n,m,inv[MAX],jc[MAX],jv[MAX],N,ans; int Calc(int x,in…
给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题给矩阵相同,之后都是错排.现在要求的就是,当前行在所有与上一行不交的排列中字典序排第几.同样考虑数位DP,从后往前枚举到当前位开始不卡限制.用两个树状数组分别维护:(1)这一位之后的数组成的集合 (2)这一位之后当前行和上一行均有的数的集合.那么分当前这位是否使用上一行这一位之后存在的数讨论,现在要…
正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多少种方案可以连成一张联通图 显然考虑容斥呗?设$f_i$表示状态为$i$的点连成联通图的合法方案,$g_i$表示状态为$i$的点随便连边的所有方案 显然$g_i$可以先预处理出来?就等于$\prod_{u,v\in i}a_{u,v}$.然后$f_i$就等于$g_i$减去不合法的数量.不合法数量显然…
题目链接 \(Description\) 棋盘上\((0,0)\)处有一个棋子.棋子只有两种走法,分别对应向量\((A_x,A_y),(B_x,B_y)\).同时棋盘上有\(n\)个障碍点\((x_i,y_i)\),棋子在任何时刻都不能跳到障碍点. 求棋子从\((0,0)\)跳到\((E_x,E_y)\)的方案数.答案对\(10^9+7\)取模. \(Solution\) 注意到\(A_x*B_y-A_y*B_x\neq0\),即两向量不共线,从某个点走到另一个点,两种方式分别所用次数\(x,y…