夹角余弦(Cosine) 也可以叫余弦相似度. 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异. (1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式: (2) 两个n维样本点a(x11,x12,-,x1n)和b(x21,x22,-,x2n)的夹角余弦        类似的,对于两个n维样本点a(x11,x12,-,x1n)和b(x21,x22,-,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度. 即:       …
余弦相似度计算字符串相似率 功能需求:最近在做通过爬虫技术去爬取各大相关网站的新闻,储存到公司数据中.这里面就有一个技术点,就是如何保证你已爬取的新闻,再有相似的新闻 或者一样的新闻,那就不存储到数据库中.(因为有网站会去引用其它网站新闻,或者把其它网站新闻拿过来稍微改下内容就发布到自己网站中). 解析方案:最终就是采用余弦相似度算法,来计算两个新闻正文的相似度.现在自己写一篇博客总结下. 一.理论知识 先推荐一篇博客,对于余弦相似度算法的理论讲的比较清晰,我们也是按照这个方式来计算相似度的.网…
http://cucmakeit.github.io/2014/11/13/%E4%BF%AE%E6%AD%A3%E4%BD%99%E5%BC%A6%E7%9B%B8%E4%BC%BC%E5%BA%A6%E4%B8%8E%E7%9A%AE%E5%B0%94%E6%A3%AE%E7%9B%B8%E5%85%B3%E7%B3%BB%E6%95%B0/ 最后一段总结精辟: 需要注意的一点是修正的余弦相似度与皮尔森相关系数之间的细微差别.我之前也一直以为两个公式一样,只是意义上不同,但是仔细观察可以看到…
在推荐系统中,协同过滤算法是应用较多的,具体又主要划分为基于用户和基于物品的协同过滤算法,核心点就是基于"一个人"或"一件物品",根据这个人或物品所具有的属性,比如对于人就是性别.年龄.工作.收入.喜好等,找出与这个人或物品相似的人或物,当然实际处理中参考的因子会复杂的多. 本篇文章不介绍相关数学概念,主要给出常用的相似度算法代码实现,并且同一算法有多种实现方式. 欧几里得距离 def euclidean2(v1: Vector, v2: Vector): Doub…
之前<皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)>一文介绍了皮尔逊相关系数.那么,皮尔逊相关系数(Pearson Correlation Coefficient)和余弦相似度(Cosine Similarity)之间有什么关联呢? 首先,我们来看一下什么是余弦相似度.说到余弦相似度,就要用到余弦定理(Law of Cosine). 假设两个向量和之间的夹角为.,向量的长度分别是和,对应的边长为向量减去向量的长度,也就是. 根据余弦…
在知识图谱构建阶段的实体对齐和属性值决策.判断一篇文章是否是你喜欢的文章.比较两篇文章的相似性等实例中,都涉及到了向量空间模型(Vector Space Model,简称VSM)和余弦相似度计算相关知识.        这篇文章主要是先叙述VSM和余弦相似度相关理论知识,然后引用阮一峰大神的例子进行解释,最后通过Python简单实现百度百科和互动百科Infobox的余弦相似度计算. 一. 基础知识 第一部分参考我的文章: 基于VSM的命名实体识别.歧义消解和指代消解 第一步,向量空间模型VSM …
源代码不记得是哪里获取的了,侵删.此处博客仅作为自己笔记学习. def multipl(a,b): sumofab=0.0 for i in range(len(a)): temp=a[i]*b[i] sumofab+=temp return sumofab def corrcoef(x,y): n=len(x) #求和 sum1=sum(x) sum2=sum(y) #求乘积之和 sumofxy=multipl(x,y) #求平方和 sumofx2 = sum([pow(i,2) for i…
from math import sqrt def multipl(a,b): sumofab=0.0 for i in range(len(a)): temp=a[i]*b[i] sumofab+=temp return sumofab def corrcoef(x,y): n=len(x) #求和 sum1=sum(x) sum2=sum(y) #求乘积之和 sumofxy=multipl(x,y) #求平方和 sumofx2 = sum([pow(i,2) for i in x]) sum…
import numpy as np from sklearn.metrics.pairwise import cosine_similarity a = np.array([1, 2, 3, 4]) b = np.array([1, 2, 6, 8]) dot = np.dot(a, b) norma = np.linalg.norm(a) normb = np.linalg.norm(b) cos = dot / (norma * normb) skl_cos = cosine_simila…
1.余弦相似度可用来计算两个向量的相似程度 对于如何计算两个向量的相似程度问题,可以把这它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向.两条线段之间形成一个夹角,如果夹角为0度,意味着方向相同.线段重合:如果夹角为90度,意味着形成直角,方向完全不相似:如果夹角为180度,意味着方向正好相反.因此,我们可以通过夹角的大小,来判断向量的相似程度.夹角越小,就代表越相似. 以二维空间为例,上图的a和b是两个向量,我们要计算它们的夹角θ.余弦定理告诉我们,可以用下…