Storm消费Kafka提交集群运行】的更多相关文章

1.创建拓扑,配置KafkaSpout.Bolt KafkaTopologyBasic.java: package org.mort.storm.kafka; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.storm.Config; import org.apache.storm.…
把我们的简单运算逻辑,很方便地扩展到海量数据的场景下,分布式运算. Map作一些,数据的局部处理和打散工作. Reduce作一些,数据的汇总工作. 这是之前的,weekend110的hdfs输入流之源码分析.现在,全部关闭断点. //4个泛型中,前两个是指定mapper输入数据的类型,KEYIN是输入的key类型,VALUE是输入的value的类型 //map 和 reduce的数据输入输出是以key-value对的形式封装的 //默认情况下,框架传递给我们的mapper的输入数据中,key是要…
大致架构 * 每个应用实例部署一个日志agent * agent实时将日志发送到kafka * storm实时计算日志 * storm计算结果保存到hbase storm消费kafka 创建实时计算项目并引入storm和kafka相关的依赖 <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-core</artifactId> <version>1.0.…
问题描述: kafka是之前早就搭建好的,新建的storm集群要消费kafka的主题,由于kafka中已经记录了很多消息,storm消费时从最开始消费问题解决: 下面是摘自官网的一段话:How KafkaSpout stores offsets of a Kafka topic and recovers in case of failuresAs shown in the above KafkaConfig properties, you can control from where in th…
这篇文章包括以下内容 (1)IDEA中scala的安装 (2)hdfs简单的使用,没有写它的部署 (3) 使用scala编写简单的wordcount,输入文件和输出文件使用参数传递 (4)IDEA打包和提交方法 一  IDEA中scala的安装 (1)   下载IEDA 装jdk (2)   启动应用程序 选择插件(pluigin)查看scala版本,然后去对应的网站下载https://plugins.jetbrains.com/plugin/1347-scala (4)   将刚才下载的sca…
使用trident接口时,storm读取kafka数据会将kafka消费记录保存起来,将消费记录的位置保存在tridentTopology.newStream()的第一个参数里, 如果设置成从头开始消费,在单机情况下,消费记录没能保存下来,每次都是从头消费,但是在集群模式下,消费记录是被保存在zookeeper中的,再次提交集群运行并不会从头开始消费,而是从zookeeper中记录的位置开始消费,要想从新开始消费, 可以通过改变tridentTopology.newStream()的第一个参数来…
如何解决短信或者邮件频繁发送的问题:每次发送的时候都先查询数据库记录,看一下有没有给这个人发送消息,上一次发送消息的时间是什么时候,如果发送时间间隔小于半个小时,就不要再发了 ========================================== 6.日志监控告警系统 6.1需求分析: 实现项目中日志监控的功能,需要做到日志监控实时告警,例如系统中出现任何异常,触发任何的告警规则,都可以实时通过短信或者邮件告知相关系统负责人 6.2 案例:实现实时监控文件变化,通过自定义flume…
打成jar包放在主节点上去运行. import java.util.Map; import backtype.storm.Config; import backtype.storm.StormSubmitter; import backtype.storm.generated.AlreadyAliveException; import backtype.storm.generated.InvalidTopologyException; import backtype.storm.spout.Sp…
我们知道storm的作用主要是进行流式计算,对于源源不断的均匀数据流流入处理是非常有效的,而现实生活中大部分场景并不是均匀的数据流,而是时而多时而少的数据流入,这种情况下显然用批量处理是不合适的,如果使用storm做实时计算的话可能因为数据拥堵而导致服务器挂掉,应对这种情况,使用kafka作为消息队列是非常合适的选择,kafka可以将不均匀的数据转换成均匀的消息流,从而和storm比较完善的结合,这样才可以实现稳定的流式计算,那么我们接下来开发一个简单的案例来实现storm和kafka的结合 s…
一个很久之前写的Spark作业,当时运行在local模式下.最近又开始处理这方面数据了,就打包提交集群,结果频频空指针.最开始以为是程序中有null调用了,经过排除发现是继承App导致集群运行时候无法反射获取main方法. 这个问题不难,起始我们也知道提交作业时候不能继承App,源码也看过这一部分,容易被混淆是程序的错.错误如下: Exception in thread "main" org.apache.spark.SparkException: Job aborted due to…