mongdb mapReduce聚合操作】的更多相关文章

1.数据准备 请看group操作 2.mapReduce名词解释 mapReduce 随着"大数据"概念而流行.其实mapReduce的概念非常简单,从功能上说,相当于RDBMS的 group 操作 mapReduce的真正强项在哪? 答:在于分布式,当数据非常大时,像google,有N多数据中心,数据都不在地球的一端,用group力所不及. group既然不支持分布式,单台服务器的运算能力必然是有限的.而mapRecuce支持分布式,支持大量的服务器同时工作,用蛮力来统计. mapR…
1.数据准备 [{"goods_id":1,"cat_id":4,"goods_name":"KD876","goods_number":1,"click_count":7,"shop_price":1388.00,"add_time":1240902890},{"goods_id":4,"cat_id":8…
1.数据准备 查看前一篇group操作 2.aggregate函数参数讲解 mysql mongdb===================WHERE --->$match GROUP BY --->$group HAVING --->$match SELECT --->$project ORDER BY --->$sort LIMIT --->$limit SUM() --->$sum COUNT() --->$sum 3.操作案例 #查询每个栏目下的商品数…
MapReduce MongoDB中的MapReduce相当于关系数据库中的group by.使用MapReduce要实现两个函数Map和Reduce函数.Map函数调用emit(key,value),遍历 Collection中所有的记录,将key与value传递给Reduce函数进行处理. Mapreduce使用惯用的javascript操作来做map和reduce操作,因此Mapreduce的灵活性和复杂性都会比aggregate 更高一些,并且相对aggregate 而言更消耗性能: 语…
在MongoDB中,有两种方式计算聚合:Pipeline 和 MapReduce.Pipeline查询速度快于MapReduce,但是MapReduce的强大之处在于能够在多台Server上并行执行复杂的聚合逻辑.MongoDB不允许Pipeline的单个聚合操作占用过多的系统内存,如果一个聚合操作消耗20%以上的内存,那么MongoDB直接停止操作,并向客户端输出错误消息. 一,使用 Pipeline 方式计算聚合 Pipeline 方式使用db.collection.aggregate()函…
在MongoDB中,有两种方式计算聚合:Pipeline 和 MapReduce.Pipeline查询速度快于MapReduce,但是MapReduce的强大之处在于能够在多台Server上并行执行复杂的聚合逻辑.MongoDB不允许Pipeline的单个聚合操作占用过多的系统内存,如果一个聚合操作消耗20%以上的内存,那么MongoDB直接停止操作,并向客户端输出错误消息. 一,使用 Pipeline 方式计算聚合 Pipeline 方式使用db.collection.aggregate()函…
根据MongoDB的文档描述,在MongoDB的聚合操作中,有以下五个聚合命令. 其中,count.distinct和group会提供很基本的功能,至于其他的高级聚合功能(sum.average.max.min),就需要通过mapReduce来实现了. 在MongoDB2.2版本以后,引入了新的聚合框架(聚合管道,aggregation pipeline ,使用aggregate命令),是一种基于管道概念的数据聚合操作. Name Description count Counts the num…
Aggregation简单来说,就是提供数据统计.分析.分类的方法,这与mapreduce有异曲同工之处,只不过mongodb做了更多的封装与优化,让数据操作更加便捷和易用.Aggregation操作,接收指定collection的数据集,通过计算后返回result数据:一个aggregation操作,从input源数据到output结果数据,中间会依次经过多个stages,整体而言就是一个pipeline:目前有10种stages,我们稍后介绍:它还提供了丰富的Expression(表达式)来…
hbase本身提供了 聚合方法可以服务端聚合操作 hbase中的CoprocessorProtocol机制. CoprocessorProtocol的原理比较简单,近似于一个mapreduce框架.由client将scan分解为面向多个region的请求,并行发送请求到多个region,然后client做一个reduce的操作,得到最后的结果. 先看一个例子,使用hbase的AggregationClient可以做到简单的面向单个column的统计. @Test public void test…
在mongodb中有时候我们需要对数据进行分析操作,比如一些统计操作,这个时候简单的查询操作(find)就搞不定这些需求,因此就需要使用  聚合框架(aggregation) 来完成.在mongodb中提供了三种方式来完成聚合操作.aggregation pipeline map-reduce function, and single purpose aggregation methods,本篇文章主要讲解aggregation pipeline(聚合管道)的使用. Aggregation Pi…