FFT/FWT】的更多相关文章

最近舟游疯狂出货,心情很好~ FFT FWT 快速傅里叶变换(FFT) 具体的推导见这篇:胡小兔 - 小学生都能看懂的FFT!!! (写的很好,不过本小学生第一次没看懂0.0) 总结下关键内容 ~ Part 0 ~ 点值表示 对于一$n$项多项式$A(x)=a_0+a_1x+a_2x^2+...+a_{n-1}x^{n-1}$ 我们代入$n$个不同的数$x_i$,得到$n$个值$y_i=A(x_i)$ 则称这$n$个有序数对$(x_i,y_i)$为多项式$A(x)$的点值表示(可以认为是$xOy…
目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理, 折半引理与求和引理 重新定义 多项式的表示 快速傅里叶变换FFT 通过 FFT 在单位复数根处插值 FFT的速度优化与迭代实现 炸精现场与 NTT 原根 NTT 任意模数 NTT 卷积状物体与分治 FFT FWT 与位运算卷积 FWT 与 \(\text{or}\) 卷积 FWT 与 \(\te…
转载自:https://blog.csdn.net/f_zyj/article/details/51594851 Index 分类细则 说起分类准则,我也是很头疼,毕竟对于很多算法,他并不是单调的,而是多方面的都挂得上钩.所以,从始至终,分类准则一直都是我很纠结的问题. 经过思量,首先分出比较主流的几类:Number.Graph.Network.Structure.Geometry: 接着,考虑到C++是ACM的重头戏,而STL又是其中浓墨重彩的一笔,所以专门分出一类STL来总结一下: 然后又分…
Index 分类细则 说起分类准则,我也是很头疼,毕竟对于很多算法,他并不是单调的,而是多方面的都挂得上钩.所以,从始至终,分类准则一直都是我很纠结的问题. 经过思量,首先分出比较主流的几类:Number.Graph.Network.Structure.Geometry: 接着,考虑到C++是ACM的重头戏,而STL又是其中浓墨重彩的一笔,所以专门分出一类STL来总结一下: 然后又分出String一类,毕竟字符串相关算法也是挺多的啊: 最后,总得有一类Other吧! 虽说,分类分好了,可是有的算…
狗: 代码小盒子 爆零秘籍 备忘录 任务计划 核心算法: 搜索/枚举/贪心 dp 分治 数据结构: 并查集 ST表 堆 线段树 树状数组 分块 树套树 平衡树 LCT 莫队 字符串: 哈希 Trie AC自动机 后缀数组 后缀自动机 线性字符串 特殊自动机(dp 套 dp) 数论: 莫反 公式 杜教筛 CRT 推式题 二项式反演 BSGS 容斥/计数/组合数学 概率期望 多项式: 拉格朗日插值 FFT FWT 生成函数 多项式全家桶 线性代数: 矩阵 线性基 图论: 树 Tarjan 树链剖分…
先简短几句话说说FFT.... 多项式可用系数和点值表示,n个点可确定一个次数小于n的多项式. 多项式乘积为 f(x)*g(x),显然若已知f(x), g(x)的点值,O(n)可求得多项式乘积的点值. 我们所需要的就是O(nlogn)快速地将两个系数多项式表示成点值多项式,O(n)求得乘积的点值表示后O(nlogn)还原成系数多项式. 这里就需要套FFT板子了... FFT中取n个单位根,需要n是2的幂. 又因为n个点可确定一个次数小于n的多项式,所以n > 乘积多项式的最高次数. 以上. HD…
实在是 美丽的数学啊 关于傅里叶变换的博客 讲的很细致 图片非常易于理解http://blog.jobbole.com/70549/ 大概能明白傅里叶变换是干吗的了 但是还是不能明白为什么用傅里叶变换来算多项式求和 在多项式中,DFT就是系数表式转换成点值表示的过程. 我们熟知的是多项式的系数表示法,通过给定一组  来确定一个唯一的多项式: 而多项式还可以有另一种表示法,称为点值表示法: 其中 可以证明,对一组互不相同的该方法也可以唯一地表示一个多项式. 为什么要引入点值表示法这个并不"直观&q…
1. 2. 点值表示法 假设两个多项式相乘后得到的多项式 的次数(最高次项的幂数)为 $n$.(这个很好求,两个多项式的最高次项的幂数相加就得到了) 对于每个点,要用 $O(n)$ 的时间 把 $x$ 分别代入两个多项式,得到两个结果 $z_1,z_2$,两者相乘得到 $z$,才能知道相乘后的多项式在代入一个 $x$ 时会得到 $z$,也就是固定了一个点 $(x,z)$. 至少需要 $n$ 个点(也就是枚举 $n$ 个 $x$)才能确定一个 $n$ 次多项式(拉格朗日插值),总时间复杂度 $O(…
做了四五天的专题,但是并没有刷下多少题.可能一开始就对多项式这块十分困扰,很多细节理解不深. 最简单的形式就是直接两个多项式相乘,也就是多项式卷积,式子是$N^2$的.多项式算法的过程就是把卷积做一种变换,在变换后各系数相称得到新系数.其实这一步变换的构造过程挺深奥的,并不是很会.对于多项式卷积的变换就是点值.于是就有了快速变换这样的算法. 细节问题出过很多.边界的问题容易弄错.一般如果是两个N项多项式相乘,得到的是一个$2*N-1$项的多项式,这是存在系数的,只不过一般我们只要N项的结果,所以…
打算写一个多项式总结. 虽然自己菜得太真实了. 好像四级标题太小了,下次写博客的时候再考虑一下. 模板 \(FFT\)模板 #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <cctype> #include <algorithm> #define rin(i,a,b)…