1 原因 自己重建了kafka  但是只有一个分区  以前的offset没有重置,导致了消费的时候 找不到主题分区  手动删除之前的offset数据(mysql自定义配置)  …
前面已经介绍了如何利用Thrift Source生产数据,今天介绍如何用Kafka Sink消费数据. 其实之前已经在Flume配置文件里设置了用Kafka Sink消费数据 agent1.sinks.kafkaSink.type = org.apache.flume.sink.kafka.KafkaSink agent1.sinks.kafkaSink.topic = TRAFFIC_LOG agent1.sinks.kafkaSink.brokerList = ,, agent1.sinks…
一.如何查看 在老版本中,使用kafka-run-class.sh 脚本进行查看.但是对于最新版本,kafka-run-class.sh 已经不能使用,必须使用另外一个脚本才行,它就是kafka-consumer-groups.sh 普通版 查看所有组 要想查询消费数据,必须要指定组.那么线上运行的kafka有哪些组呢?使用以下命令: bin/kafka-consumer- --list 注意:根据实际情况修改kafka的连接地址 执行输出: ... usercenter ... 这些组在是程序…
我们在使用consumer消费数据时,有些情况下我们需要对已经消费过的数据进行重新消费,这里介绍kafka中两种重新消费数据的方法. 1. 修改offset 我们在使用consumer消费的时候,每个topic会产生一个偏移量,这个偏移量保证我们消费的消息顺序且不重复.Offest是在zookeeper中存储的,我们可以设置consumer实时或定时的注册offset到zookeeper中.我们修改这个offest到我们想重新消费的位置,就可以做到重新消费了.具体修改offest的方法这里就不详…
遇到一个问题,使用Python kafka客户端和kafka命令行都无法消费数据,但是在kafka命令行后面添加--partition 0后就可以消费数据. bin/kafka-console-consumer., # 不能消费数据 bin/kafka-console-consumer., --partition # 添加partiton参数后可以消费数据 原因在与offsets.topic.replication.factor的值在配置文件中大于了节点个数(两个节点,却将这个值设置为了3),…
安装 kafka:  pip install kafka-python 生产数据 from kafka import KafkaProducer import json ''' 生产者demo 向test_lyl2主题中循环写入10条json数据 注意事项:要写入json数据需加上value_serializer参数,如下代码 ''' producer = KafkaProducer( value_serializer=lambda v: json.dumps(v).encode('utf-8'…
原因分析: 当某个consumer宕机时,消费位点(例如2s提交一次)尚未提交到zookeeper,此时Kafka集群自动rebalance后另一consumer来接替该宕机consumer继续消费,因为先前宕机consumer最近的消费位点尚未提交,导致数据重复消费 突发流量.跨机房(网络请求延时高).网络不稳定,出现丢包现象 业务逻辑有偏差 常见丢包现象如突然掉线.页面卡住.视频卡住.图片加载卡主等,使用Ping测量丢包的最佳方法是向一个IP地址发送大量的Ping命令,然后检查没有应答的那些…
kafaka版本:kafka_2.11-1.1.0原因有2个:1  目录不能有空格   D:\Soft\kafka_2.11-1.1.0 , 放在Program Files目录中一直有问题2  修改D:\Soft\kafka_2.11-1.1.0\bin\windows\kafka-run-class.bat 文件179行 set COMMAND=%JAVA% %KAFKA_HEAP_OPTS% %KAFKA_JVM_PERFORMANCE_OPTS% %KAFKA_JMX_OPTS% %KAF…
当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制.为了体验这个关键的特性,你需要满足以下几个先决条件: 1.输入的数据来自可靠的数据源和可靠的接收器: 2.应用程序的metadata被application的driver持久化了(checkpointed ); 3.启用了WAL特性(Write ahead log). 下面我将简单地介绍这些先决条件. 可靠的数据源和可靠的接收器 对于一些输入数据源(比如Kafka),Spark S…
使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以保存Direct方式的offset,但是可能会导致频繁写HDFS占用IO),所以每次出现问题的时候,重启程序,而程序的消费方式是Direct,所以在程序down掉的这段时间Kafka上的数据是消费不到的,虽然可以设置offset为smallest,但是会导致重复消费,重新overwrite hive…