在网易云课堂上学习计算机视觉经典课程cs231n,觉得有必要做个笔记,因为自己的记性比较差,留待以后查看. 每一堂课都对应一个学习笔记,下面就开始第一堂课. 这堂课主要是回顾了计算机视觉的起源及其后来的发展,有助于学者理清计算机视觉的研究主题和发展脉络. 首先介绍了计算机视觉的相关领域,因为它不仅仅关乎计算机科学,还涉及生物,物理,工程等等学科,是一门综合性很强的学科. 接着从物种大爆炸讲起 推测生物有了视觉后极大地扩张了活动区域,带来了生物的蓬勃发展. 接着讲计算机视觉在近现代的发展,这里省略…
原文链接:http://blog.csdn.net/myarrow/article/details/51878004 1. 基本概念 1)CNN:Convolutional Neural Networks 2)FC:Fully Connected 3)IoU:Intersection over Union (IoU的值定义:Region Proposal与Ground Truth的窗口的交集比并集的比值,如果IoU低于0.5,那么相当于目标还是没有检测到) 4)ICCV:Internationa…
原文地址:智能单元 图像分类:所谓图像分类问题,就是已有固定的分类标签集合,然后对于输入的图像按照标签类别,将其打上标签. 下面先介绍一下一个简单的图像如何利用计算机进行分类: 例子:以下图为例,图像分类模型读取该图片,并生成该图片属于集合 {cat, dog, hat, mug}中各个标签的概率.需要注意的是,对于计算机来说,图像是一个由数字组成的巨大的3维数组.在这个例子中,猫的图像大小是宽248像素,高400像素,有3个 v颜色通道,分别是红.绿和蓝(简称RGB).如此,该图像就包含了24…
原文地址:智能单元 K-Nearest Neighbor分类器 大家可能注意到了,为什么只用最相似的一张图片的标签来作为测试图像的标签呢?这不是很奇怪吗!是的,使用K-Nearest Neighbor分类器就能做得更好.它的思想很简单:与其只找最相近的那1个图片的标签,我们找最相似的k个图片标签,然后让他们针对测试图片进行投票,最后把票数最高的标签作为对测试图片的预测.所以当k=1时候,k-Nearest Neighbor分类器就是Nearest Neighbor分类器.从直观感受上就可以看到,…
图像分类可说是计算机视觉中的基础任务同时也是核心任务,做好分类可为检测,分割等高阶任务打好基础. 本节课主要讲了两个内容,K近邻和线性分类器,都是以猫的分类为例. 一. K近邻 以猫的分类为例,一张含有猫的图片,也不过就是一堆像素点             问题就在于给你一堆点,如何判断出是一只猫,在很久很久以前,这还真是个超级难题,何况不同的猫,像素点完全不一致 具体来说可有以下几种 光照,目标的形变,遮挡,背景杂乱,类内差异等等.   如何利用K近邻算法解决这一问题呢,K近邻,就是将你要判别…
课程主页:CS231n: Convolutional Neural Networks for Visual Recognition 关注其:Course Project主页 视频学习:云课堂 斯坦福CS231n-深度学习与计算机视觉 助教:Andrej Karpathy 斯坦福CS231n学习笔记-中文系列 cs231n学习笔记-CNN-目标检测.定位.分割…
第一周学习笔记: 一.Python介绍      1.Python的创始人为吉多·范罗苏姆.1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言的一种继承.  最新的TIOBE排行榜,Python赶超PHP占据第五, Python崇尚优美.清晰.简单,是一个优秀并广泛使用的语言. 2.Python主要应用领域:云计算.WEB开发.科学运算.人工智能.系统运维.金融.图形GUI. 3.Python是一门动态解释性的强类型定义语言. 4.Pyt…
+ mu) * v # 位置更新变了形式 对于NAG(Nesterov's Accelerated Momentum)的来源和数学公式推导,我们推荐以下的拓展阅读: Yoshua Bengio的Advances in optimizing Recurrent Networks,Section 3.5. Ilya Sutskever's thesis (pdf)在section 7.2对于这个主题有更详尽的阐述. 学习率退火 在训练深度网络的时候,让学习率随着时间退火通常是有帮助的.可以这样理解:…
神经网络推荐博客: 深度学习概述 神经网络基础之逻辑回归 神经网络基础之Python与向量化 浅层神经网络 深层神经网络 前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专业的翻译,在此我会直接copy他们翻译的笔记,有些地方会用红字写自己的笔记,本文只是作为自己的学习笔记.本文内容官网链接:Optimization Note , 1) # 含3个数字的随机输入向量(3x1) h1 = f(np.dot(W1, x) + b1) # 计算第一个隐层的激活数据(4x1)…
译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客和猴子翻译完成,堃堃和李艺颖进行校对修改. 原文如下 内容列表: 结构概述 用来构建卷积神经网络的各种层 卷积层 汇聚层 归一化层 全连接层 将全连接层转化成卷积层 卷积神经网络的结构 层的排列规律 层的尺寸设置规律 案例学习(LeNet / AlexNet / ZFNet / GoogLeNet / VGGNet) 计算上的考量 拓展资源 卷积神经网络(C…