首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
k_means算法的C++实现
】的更多相关文章
k_means算法的C++实现
首先画出k_means算法的流程图:…
k_means算法+python实现
文章目录 一.原理 二.算法步骤 三.实例如下: 四.python代码实现: 一.原理 K均值算法使用的聚类准则函数是误差平方和准则,通过反复迭代优化聚类结果,使所有样本到各自所属类别的中心的距离平方和达到最小. 二.算法步骤 设迭代次数 r = 0 如果把数据分成k个类,则第一步选前k个点作为第一批聚类中心:Z1(r ),Z2(r )-Zk(r ) 将所有的数据与各个聚类中心求距离(根据实际情况选择欧式.马氏等距离),然后将各数据点分配到离自己最近的聚类中心(相当于分类). 对于分好的类,求每…
k_means算法C++实现,改为面向对象
画的类图如下:…
Python实现 K_Means聚类算法
使用 Python实现 K_Means聚类算法: 问题定义 聚类问题是数据挖掘的基本问题,它的本质是将n个数据对象划分为 k个聚类,以便使得所获得的聚类满足以下条件: 同一聚类中的数据对象相似度较高: 不同聚类中的对象相似度较小. 相似度可以根据问题的性质进行数学定义. K-means算法就是解决这类问题的经典聚类算法 它的基本思想是以空间中k个点为中心,进行聚类,对最靠近他们的对象归类. 通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果其IPO描述如下: 输入:N个数据…
使用sklearn进行K_Means聚类算法
首先附上官网说明 [http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#examples-using-sklearn-cluster-kmeans] 再附上一篇翻译文档 http://blog.csdn.net/xiaoyi_zhang/article/details/52269242 再给一个百度上找的例子(侵权删): # -*- coding: utf-8 -*- from sklearn.…
python机器学习(1:K_means聚类算法)
一.算法介绍 K-means算法是最简单的也是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的.算法的目的是使各个样本与所在均值的误差平方和达到最小(这也是评价K-means算法最后聚类效果的评价标准) 这里小编给大家推荐两个不错的学习链接: 网易公开课 博客 二.算法步骤解析 我们以二维点集为例: 从平面中随机选取K个点作为初始聚类中心,我们的目的是将给定的所有点集分成K类: 计算每个点到初始聚类中心的距离,并选择距离最近的归为其类: 所有点归完类后,计算每一类的质心,…
建模分析之机器学习算法(附python&R代码)
0序 随着移动互联和大数据的拓展越发觉得算法以及模型在设计和开发中的重要性.不管是现在接触比较多的安全产品还是大互联网公司经常提到的人工智能产品(甚至人类2045的的智能拐点时代).都基于算法及建模来处理. 常见的词汇:机器学习.数据建模.关联分析.算法优化等等,而这些种种又都是基于规律的深度开发(也难怪道德经的首篇就提出道可道非常道,名可名非常名的说法),不管是线性还是非线性,总之存在关联关系,而我们最好理解的就是线性关系,简单的用个函数就能解决.比如我们生活中应用的比较的归纳总结,其…
转载: scikit-learn学习之K-means聚类算法与 Mini Batch K-Means算法
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
机器学习算法实现(R&Python code)
Machine Learning Algorithms Machine Learning Algorithms (Python and R) 明天考试,今天就来简单写写机器学习的算法 Types Supervised Learning(监督学习) Decision Tree(决策树) Random Forest(随机森林) kNN(k最邻近算法) Logistic Regression(逻辑回归) Unsupervised Learning(非监督学习) Apriori algorithm(关联…
Python—kmeans算法学习笔记
一. 什么是聚类 聚类简单的说就是要把一个文档集合根据文档的相似性把文档分成若干类,但是究竟分成多少类,这个要取决于文档集合里文档自身的性质.下面这个图就是一个简单的例子,我们可以把不同的文档聚合为3类.另外聚类是典型的无指导学习,所谓无指导学习是指不需要有人干预,无须人为文档进行标注. 二.聚类算法:from sklearn.cluster import KMeans def __init__(self, n_clusters=8, init='k-means++', n_init=10,…