机器学习实战之K-Means算法】的更多相关文章

第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k 近邻算法的输入为实例的特征向量,对应于特征空间的点:输出为实例的类别,可以取多类.k 近邻算法假设给定一个训练数据集,其中的实例类别已定.分类时,对新的实例,根据其 k 个最近邻的训练实例的类别,通过多数表决等方式进行预测.因此,k近邻算法不具有显式的学习过程. k 近邻算法实际上利用训练数据集对…
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as plt from os import listdir def makePhoto(returnMat,classLabelVector): #创建散点图 fig = plt.figure() ax = fig.add_subplot(111) #例如参数为349时,参数349的意思是:将画布分割成3行4…
目录 K-近邻算法 k-近邻算法概述 解析和导入数据 使用 Python 导入数据 实施 kNN 分类算法 测试分类器 使用 k-近邻算法改进约会网站的配对效果 收集数据 准备数据:使用 Python 解析文本文件 分析数据:使用 Matplotlib 画二维散点图 准备数据:归一化数值 测试算法:验证分类器 使用算法:构建完整可用系统 手写识别系统 准备数据 测试算法 使用算法:构建完整可用系统 总结 K-近邻算法 k-近邻分类算法概述 使用 k-近邻算法改进约会网站的配对效果 手写识别系统…
三要素:距离度量.k值选择.分类决策 原理: (1) 输入点A,输入已知分类的数据集data (2) 求A与数据集中每个点的距离,归一化,并排序,选择距离最近的前K个点 (3) K个点进行投票,票数最多的分类即为所求 优点: 简单,可用于非线性分类 缺点: 当样本不均衡时影响投票结果: 分类结果受K值影响: 时空复杂度高:需要保存全部数据O(N),每次取前k个都要与全部数据进行计算O(N),耗费内存大且计算量大 改进: 样本均衡化 太小的K值容易受噪音影响,大的K值减小噪音但会使分类边界模糊,最…
机器学习实战笔记-k-近邻算法 目录 1. k-近邻算法概述 2. 示例:使用k-近邻算法改进约会网站的配对效果 3. 示例:手写识别系统 4. 小结 本章介绍了<机器学习实战>这本书中的第一个机器学习算法:k-近邻算法,它非常有效而且易于掌握.首先,我们将探讨k-近邻算法的基本理论,以及如何使用距离测量的方法分类物品:其次我们将使用Python从文本文件中导入并解析数据:再次,本文讨论了当存在许多数据来源时,如何避免计算距离时可能碰到的一些常见错误:最后,利用实际的例子讲解如何使用k-近邻算…
转载请注明源出处:http://www.cnblogs.com/lighten/p/7593656.html 1.原理 本章介绍机器学习实战的第一个算法——k近邻算法(k Nearest Neighbor),也称为kNN.说到机器学习,一般都认为是很复杂,很高深的内容,但实际上其学习门栏并不算高,具备基本的高等数学知识(包括线性代数,概率论)就可以了,甚至一些算法高中生就能够理解了.kNN算法就是一个原理很好理解的算法,不需要多好的数学功底,这是一个分类算法(另一个大类是回归),属于监督学习的范…
py2.7 : <机器学习实战> k-近邻算法 11.19 更新完毕 原文链接 <机器学习实战>第二章k-近邻算法,自己实现时遇到的问题,以及解决方法.做个记录. 1.写一个kNN.py保存了之后,需要重新导入这个kNN模块.报错:no module named kNN. 解决方法:1.将.py文件放到 site_packages 目录下            2.在调用文件中添加sys.path.append("模块文件目录"):import sys sys.…
台大机器技法跟基石都看完了,但是没有编程一直,现在打算结合周志华的<机器学习>,撸一遍机器学习实战, 原书是python2 的,但是本人感觉python3更好用一些,所以打算用python3 写一遍.python3 与python2 不同的地方会在程序中标出. 代码及数据:https://github.com/zle1992/MachineLearningInAction k-近邻算法 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高.对K的取值敏感!!! 适用…
机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空间中的K个最相似(即特征空间最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 我们采用一个图来进行说明(如下): 图中的蓝色小正方形和红色的小正方形属于两类不同的样本数据,图正中间的绿色的圆代表的是待分类的数据.现在我们可以根据K最近邻算法来判断绿色的圆属于哪一类数据? 如果K=3,绿色圆点的…
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更好的体验. 本文内容介绍机器学习的K近邻算法,用它处理分类问题.分类问题的目标是利用采集到的已经经过分类处理的数据来预测新数据属于何种类别. K近邻算法 K近邻算法对给定的某个新数据,让它与采集到的样本数据点分别进行比较,从中选择最相似的K个点,然后统计这K个点中出现的各个类别的频数,并判定频数最高…