POJ3177(无向图变双连通图)】的更多相关文章

Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11514   Accepted: 4946 Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the…
Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10798   Accepted: 4626 Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the…
Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12676   Accepted: 5368 Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the…
传送门:Redundant Paths 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任何两个牧场之间至少有两条独立的路.两条独立的路是指:没有公共边的路,但可以经过同一个中间顶点. 分析:在同一个边双连通分量中,任意两点都有至少两条独立路可达,因此同一个边双连通分量里的所有点可以看做同一个点. 缩点后,新图是一棵树,树的边就是原无向图的桥. 现在问题转化为:在树中至少添加多少条边能使图变为双连通图. 结论:添加…
Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of…
无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被称为"点双连通分量",记为"\(v-DCC\)".无向图图的极大边双连通子图被称为"边双连通分量",记为"\(e-DCC\)". 没错,万能的图论连通性算法\(Tarjan\)又来了. 预备知识 时间戳 图在深度优先遍历的过程中,…
构造双连通图:一个有桥的连通图,如何把它通过加边变成边双连通图? 一个有桥的连通图,如何把它通过加边变成边双连通图?方法为首先求出所有的桥,然后删除这些桥边,剩下的每个连通块都是一个双连通子图.把每个双连通子图收缩为一个顶点,再把桥边加回来,最后的这个图一定是一棵树,边连通度为1. 统计出树中度为1的节点的个数,即为叶节点的个数,记为leaf.则至少在树上添加(leaf+1)/2条边,就能使树达到边二连通,所以至少添加的边数就是(leaf+1)/2.具体方法为,首先把两个最近公共祖先最远的两个叶…
Redundant Paths Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 3177 Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another fiel…
http://poj.org/problem?id=3352 题意:给出一个有n个顶点m条边的无向连通图,问至少添加几条边,使删除任意一条边原图仍连通. 思路:一个边双连通图删除任意一条边仍为连通图.故此题即为求原图添加几条边能成为边双连通图.先对无向图中的强连通分量进行缩点,所有的缩点就能构成一棵树,节点之间的连线即为桥.只需将树中的叶子节点相连,就能构成一个边双连通图.叶子节点即为度为1的连通分量.low[i]值相同的点在同一个连通分量中.所加边数=(叶子数+1)/2; #include <…
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为“点双连通图”,不存在桥则称为“边双连通图”. 无向图的极大点双连通子图就v-DCC,极大边双连通子图就是e-DCC. 上一篇我们讲了如何用Tarjan算法求出无向图中的所有割点和桥. 不会求的朋友们可以去看一看上篇文章:Tarjan算法求无向图的割点和桥 这里“极大”的定义可以理解为包含部分点的最…