洛谷P2047||bzoj1491 [NOI2007]社交网络】的更多相关文章

https://www.luogu.org/problemnew/show/P2047 https://www.lydsy.com/JudgeOnline/problem.php?id=1491 也可以用floyed做掉 #include<cstdio> #include<algorithm> #include<cstring> #include<vector> using namespace std; #define fi first #define se…
P2047 [NOI2007]社交网络 题目描述 在社交网络(\(social\) \(network\))的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有\(n\)个人,人与人之间有不同程度的关系.我 们将这个关系网络对应到一个\(n\)个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值\(c\),\(c\)越小,表示两 个人之间的关系越密切. 我们可以用对应结点之间的最短路长度来衡量两个人\(s\)和\…
P2047 [NOI2007]社交网络 $Floyd$,一眼看到就是他(博主是不小心瞄到了这个题的标签吧qwq) 这个题目只要预处理出$S$到$T$的最短路的条数即可,类似$Spfa$的更新方法 如果当前枚举的$k$可以更新$i$到$j$的最短路,那么就更新最短路,同时$i$到$j$的最短路条数更新为$p[i][k]*p[k][j]$根据乘法原理,$p[i][j]$表示$i$到$j$的最短路条数 最后统计一下就可以了,也是$N^3$暴力枚举 注意:要开$long$$long$ #include<…
1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2196  Solved: 1170[Submit][Status][Discuss] Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这个关系网络对应到一个n个结点的无向图上, 两个不同的人若互相认识,则在他们对应…
题目传送门 社交网络 题目描述 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切. 我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利…
P2047 社交网络 题目描述 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切. 我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利…
Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2343  Solved: 1266[Submit][Status][Discuss] Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这个关系网络对应到一个n个结点的无向图上, 两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数…
题目 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这个关系网络对应到一个n个结点的无向图上, 两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人 之间的关系越密切.我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路 径上的其他结点为s和t的联系提供了某种便利,即这些结点对于s和t之间…
传送门 最短路计数问题.因为数据量非常小($N \leq 100$),所以Floyd随便搞搞就行了. $f[i][j]$表示路径长度,$g[i][j]$表示最短路方案数. 先跑一遍裸的Floyd,然后利用乘法原理统计$g[i][j]$即可. $g[i][j]=\sum g[i][k] \times g[k][j]$ //BZOJ 1491 //by Cydiater //2016.10.27 #include <iostream> #include <cstdlib> #inclu…
Description   Solution n<=100自然联想Floyd 设两个数组d[n][n]存最短距离,t[n][n]存最短路径条数 更新d的时候顺便更新t,乘法原理 if(d[i][j]>d[i][k]+d[k][j]){ d[i][j]=d[i][k]+d[k][j]; t[i][j]=t[i][k]*t[k][j]; } else if(d[i][j]==d[i][k]+d[k][j]) t[i][j]+=t[i][k]*t[k][j]; 再统计答案 if(d[i][j]==d…