Imperial roads 非严格次小生成树】的更多相关文章

cf测评姬比uva快了五倍... /* 不管这条边是不是在mst上,直接跑lca求出路径上的最大边w即可 ans=mst-w+dist(u,v) */ #include<bits/stdc++.h> using namespace std; #define maxn 100007 ]; ]; int cmp(E a,E b){return a.w<b.w;} int head[maxn],tot,n,m,q; map<int,int>mp[maxn]; /*4 5 2 1 3…
题目描述: 有一天,pqq准备去给×i×准备礼物,他有一些礼品准备包装一下,他用线将这些礼物连在一起,不同的礼物因为风格不同所以连接它们需要不同价值的线.风格差异越大,价格越大(所以两个礼物之间只有一种连接价格),当然有些礼物实在太不友好,所以有些礼物无法相连.pqq打算把所有礼物打包在一起,他不准备花太多钱,但更不想花最少的钱(免得被拒绝).所以他想知道第二便宜的包装方案(可重复,pqq会认为这是天命并直接选用最小代价来包装礼物),同时,他还想知道最小的包装代价以向×i×进行炫耀.但是由于pq…
严格次小生成树 首先看看如果不严格我们怎么办. 非严格次小生成树怎么做 由此,我们发现一个结论,求非严格次小生成树,只需要先用kruskal算法求得最小生成树,然后暴力枚举非树边,替换路径最大边即可. 那要是严格呢? 我们发现如果是严格的次小生成树,那么将一条边替换另一条时,这两条边的权值一定不相同 但是,我们知道,替换边肯定大于等于被替换边(因为如果替换边小于被替换边,就存在一颗包含替换边而不包含被替换边的一棵权值更小的生成树,原树就不是最小生成树了) 所以替换边要么等于路径上最大的边,要么比…
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小生成树弄出来,因为要求次小生成树.至于为什么次小一定只在最小的基础上改变了一条边,我也不会严谨的证明......打表找规律大法好 剩下的可以有一堆数据结构来维护最大值和次大值(原理两位巨佬都讲清楚了,这里只分析一下算法的优劣) kruscal+倍增+LCA 山楠巨佬的做法,我也写了这一种.复杂度\(…
非严格次小生成树 很简单,先做最小生成树 然后枚举没加入的边加入,替换掉这个环内最大的边 最后取\(min\) 严格次小生成树 还是一样的 可以考虑维护一个严格次大值 最大值和枚举的边相同就替换次大值的边 否则替换最大值的边 最后取\(min\) 裸题 Luogu 随你用各种姿势\(AC\) \(LCT\)常数大,但是好写,开\(O2\)可以过 # include <bits/stdc++.h> # define RG register # define IL inline # define…
题目链接\(Click\) \(Here\). 题意就是要求一个图的严格次小生成树.以前被题面吓到了没敢做,写了一下发现并不难. 既然要考虑次小我们就先考虑最小.可以感性理解到一定有一种次小生成树,可以由最小生成树删一条边再加一条边得到.我们枚举加上去的这一条边,加上去以后原\(mst\)会成为一个基环树,想让它次小就在这个环里找一条最长的边(不包含新加进去的)删掉就好.放在树上来讲,就是找到\(u\)到\(v\)路径上的最大值.这样我们就有了非严格次小生成树. 严格要怎么处理?我们需要排除新加…
1.次小生成树 非严格次小生成树:边权和小于等于最小生成树的边权和 严格次小生成树:    边权和小于最小生成树的边权和 算法:先建好最小生成树,然后对于每条不在最小生成树上的边(u,v,w)如果我们把它放到最小生成树中,会形成一个环,那么再从这个环上删除一个除加进去的边外且小于(或等于)当前w的最大权值边,可以用倍增(或树剖)维护链上的最大值来实现非严格的,对于严格的来说,最大值可能等于w,那么就再维护一个次大值. P4180 [模板]严格次小生成树[BJWC2010] 代码: #pragma…
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小生成树弄出来,因为要求次小生成树.至于为什么次小一定只在最小的基础上改变了一条边,我也不会严谨的证明......打表找规律大法好 剩下的可以有一堆数据结构来维护最大值和次大值(原理两位巨佬都讲清楚了,这里只分析一下算法的优劣) kruscal+倍增+LCA 山楠巨佬的做法,我也写了这一种.复杂度\(…
题目链接:https://www.luogu.org/problemnew/show/P4180 这个题卡树剖.记得开O2. 这个题inf要到1e18. 定理:次小生成树和最小生成树差距只有在一条边上 非严格次小生成树:枚举每一条不在最小生成树上的边,加入到最小生成树中构成一个环.删去这个环上的最大值.(此最大值有可能与加入生成树中的边相等,故为非严格次小生成树.)重复此操作取min,得到次小生成树.(基于kruskal实现.) 严格次小生成树:与非严格次小生成树类似,不同在于为了避免删去环上的…
小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值) \sum_{e \in E_M}value(e)<\sum_{e \in E_S}value(e)∑e∈EM​​value(e)<∑e∈ES​​value(e) 这下小…