判断是否为AVL树】的更多相关文章

时间复杂度:O(n) // 判断是否为AVL树 public int isAVL(TreeNode node) { if (node == null) { return 0; } int left = isAVL(node.left); if (left == -1) { return -1; } int right = isAVL(node.right); if (right == -1) { return -1; } int diff = left - right; if (Math.abs…
AVL树是高度的平衡二插搜索树,其左子树和右子树的高度之差不超过1(树中的左子树和右子树都是AVL树),维持这个高度之差就要控制它的平衡因子.那么判断一颗AVL树是否平衡就需要判断它的左子树和右子树高度差是否为1,并且子树也遵循这个原则.这里我们可以用递归的方法来判断这颗二叉树是否为平衡二叉树,看他的左右子树之差是否不超过1.代码如下: bool IsBalance(Node* parent)    {        if (parent == NULL)            return t…
题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL树,按照层序遍历输出,最后判断这棵AVL树是不是完全二叉树. 思路: 这道题过段时间还要再来手搓一发.AVL模板要记住. 判断是不是完全二叉树的话只用看,如果有一个节点儿子是空,而他之后又出现了至少有一个儿子的节点的话,就不是完全二叉树.[蛮巧妙的] #include<cstdio> #inclu…
思路:AVL树是高度平衡的二叉搜索树,这里为了清晰说明,分别判断是否为搜索树,是否为平衡树. struct TreeNode { struct TreeNode *left; struct TreeNode *right; int key; }; //这里先判断是否为二叉搜索树,其次判断是否为平衡的 bool IsAVL(TreeNode *root,int depth) { if (isBST(root)&&isBalance(root,&depth)) return true;…
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by…
今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,AVL是发明平衡二叉树的两个科学家的名字的缩写,在此就不做深究了.其实平衡二叉树就是二叉排序树的一种,比二叉排序树多了一个平衡的条件.在一个平衡二叉树中,一个结点的左右子树的深度差不超过1. 本篇博客我们就依照平衡二叉树的特点,在创建二叉排序树的同时要保证结点的左右子树的深度差不超过1的规则.当我们往二叉排序树…
欢迎探讨,如有错误敬请指正 如需转载,请注明出处http://www.cnblogs.com/nullzx/ 1. AVL定义 AVL树是一种改进版的搜索二叉树.对于一般的搜索二叉树而言,如果数据恰好是按照从小到大的顺序或者从大到小的顺序插入的,那么搜索二叉树就对退化成链表,这个时候查找,插入和删除的时间都会上升到O(n),而这对于海量数据而言,是我们无法忍受的.即使是一颗由完全随机的数据构造成的搜索二叉树,从统计角度去分析,在进行若甘次的插入和删除操作,这个搜索二叉树的高度也不能令人满意.这个…
AVL树 在二叉查找树(BST)中,频繁的插入操作可能会让树的性能发生退化,因此,需要加入一些平衡操作,使树的高度达到理想的O(logn),这就是AVL树出现的背景.注意,AVL树的起名来源于两个发明者:Adel'son-Vel'skii 和 Landis. AVL树除了具备BST树的基本特征之外,还具有一个非常重要的特点: 如果将一个节点的左.右子树的高度差定义为该节点的平衡因子,则AVL树的任意一个节点的平衡因子只有0.-1.1 三种取值. 可以采用递归的方法来判断一个BST树是不是AVL树…
  1.概念: AVL树本质上还是一个二叉搜索树,不过比二叉搜索树多了一个平衡条件:每个节点的左右子树的高度差不大于1. 二叉树的应用是为了弥补链表的查询效率问题,但是极端情况下,二叉搜索树会无限接近于链表,这种时候就无法体现二叉搜索树在查询时的高效率,而最初出现的解决方式就是AVL树.如下图: 2.旋转 说到AVL树就不得不提到树的旋转,旋转是AVL维持平衡的方式,主要有以下四种类型. 2.1.左左旋转 如图2-1所示,此时A节点的左树与右树的高度差为2,不符合AVL的定义,此时以B节点为轴心…
(百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.…