迁移学习(Transfer Learning)】的更多相关文章

--------------------- 作者:bestrivern 来源:CSDN 原文:https://blog.csdn.net/bestrivern/article/details/87008263 ========================================================== 一.迁移学习(Transfer learning)1.Task A and Task B has the same input x 2.You have a lot mor…
迁移学习两种类型: ConvNet as fixed feature extractor:利用在大数据集(如ImageNet)上预训练过的ConvNet(如AlexNet,VGGNet),移除最后几层(一般是最后分类器),将剩下的ConvNet作为应用于新数据集的固定不变的特征提取器,输出特征称为CNN codes,如果在预训练网络上是经过ReLUd,那这些codes也要经过ReLUd(important for performance):提取出所有CNN codes之后,再基于新数据集训练一个…
在前面的文章中,我们通常是拿到一个任务,譬如图像分类.识别等,搜集好数据后就开始直接用模型进行训练,但是现实情况中,由于设备的局限性.时间的紧迫性等导致我们无法从头开始训练,迭代一两百万次来收敛模型,所以这个时候迁移学习就派上用场了. 什么是迁移学习? 迁移学习通俗来讲,就是运用已有的知识来学习新的知识,核心是找到已有知识和新知识之间的相似性,用成语来说就是举一反三.由于直接对目标域从头开始学习成本太高,我们故而转向运用已有的相关知识来辅助尽快地学习新知识.比如,已经会下中国象棋,就可以类比着来…
参考:https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 以下是两种主要的迁移学习场景 微调convnet : 与随机初始化不同,我们使用一个预训练的网络初始化网络,就像在imagenet 1000 dataset上训练的网络一样.其余的训练看起来和往常一样. 将ConvNet作为固定的特征提取器 : 在这里,我们将冻结所有网络的权重,除了最后的全连接层.最后一个完全连接的层被替换为一个具有随机权重的新层,…
参考:登上<Cell>封面的AI医疗影像诊断系统:机器之心专访UCSD张康教授 Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning 2018-2-22 Cell 读<Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning> 没有问题就无法学习: 1. 文中的数据规模…
摘要:诸多关于人工智能的流行词汇萦绕在我们耳边,比如深度学习 (Deep Learning).强化学习 (Reinforcement Learning).迁移学习 (Transfer Learning),不少人对这些高频词汇的含义及其背后的关系感到困惑,今天就为大家理清它们之间的关系和区别. 一. 深度学习: 深度学习的成功和发展,得益于算力的显著提升和大数据,数字化后产生大量的数据,可通过大量的数据训练来发现数据的规律,从而实现基于监督学习的数据预测. 基于神经网络的深度学习主要应用于图像.文…
资源:http://www.cse.ust.hk/TL/ 简介: 一个例子: 关于照片的情感分析. 源:比如你之前已经搜集了大量N种类型物品的图片进行了大量的人工标记(label),耗费了巨大的人力物力,构建了源情感分类器(即输入一张照片,可以分析出照片的情感).注:这里的情感不是指人物的情感,而是指照片中传达出来的情感,比如这张照片是积极的还是消极的. 目标:因为不同类型的物品,他们在源数据集中的分布也是不同的,所以为了维护一个很好的分类器性能,经常需要增加新的物品.传统的方式是搜集大量N+1…
机器学习策略-多任务学习 Learninig from multiple tasks 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.7 迁移学习 Transfer Learninig 神经网络可以从一个任务中习得知识,并将这些知识应用到另一个独立的任务中.例如:你已经训练好一个能够识别猫的系统,你利用这些知识或者这些知识的部分去完成更好的 阅读X射线扫描图. 这就是所谓的-- 迁移学习 how-to 假设你已经训练好一个图像识别神经网络,首先用一个神经网络,在(x,y)对上训练,其…
1. 什么是迁移学习 迁移学习(Transformer Learning)是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中.迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题. 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴. 找到目标问题的相似性,迁移学习任务就…
在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要对每个领域都标定大量训练数据,这将会耗费大量的人力与物力.而没有大量的标注数据,会使得很多与学习相关研究与应用无法开展…