poj1845 数论】的更多相关文章

//Accepted 204K 16MS //约数和 //n=p1^e1*p2^e2***pk^ek //约数和为:(p1^0+p1^1+..+p1^e1)*(p2^0+p2^1+..+p2^e2)*..(pk^0+pk^1+..pk^ek) //现考虑: S=p1^1+p1^2+..p1^e1 // 令t=e1/2 // if (e1%2==0) // S=(p1^1+p1^2+..+p1^t)+p1^t*(p1^1+p1^2+..+p1^t) // if (e1%2==1) // S=(p1…
大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题思路: 应用定理主要有三个: (1)   整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式. A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数 (2)   约数和公式: 对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 有A的所有因子之和为 S = (1+p1+p1^2+p1^3+...p1^k1…
Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16466   Accepted: 4101 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 99…
正解:小学数学数论 解题报告: 传送门! 其实不难但我数学这个方面太菜了所以还是多写点儿博客趴QAQ 然后因为是英文的所以先翻译一下,,,? 大概就是说求AB的所有约数之和,对9901取膜 这个只需要知道一个小学奥数知识点就欧克了? 就,对D质因数分解成D=w1p1*w2p2*w3p3*... 那D的约数的和就(w10+w11+...+w1p1)*... 然后就可以直接对A质因数分解,直接套上面这个式子只是上限变成了w1B*w1 然后就做完了,,,? 可能晚上放代码趴QAQ?…
题目: POJ1845 分析: 首先用线性筛把\(A\)分解质因数,得到: \[A=p_1^{a_1}*p_2^{a_2}...*p_n^{a_n} (p_i是质数且a_i>0) \] 则显然\(A^B\)分解质因数后为 \[A=p_1^{a_1B}*p_2^{a_2B}...*p_n^{a_nB} (p_i是质数且a_i>0) \] 接下来隆重推出约数和定理:(证明见[知识总结]约数个数定理和约数和定理及其证明) \[Sum=\prod_{i=1}^n \sum_{j=0}^{a_i}p_i…
题目传送门 Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 26041   Accepted: 6430 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S…
传送门 大意:求A^B的所有因子之和,并对其取模 9901再输出 (这题又调了半天,把n和项数弄混了QAQ) 根据算数基本定理:A=(p1^k1)*(p2^k2)*(p3^k3)*...*(pn^kn) (pi为素数) 则A的所有因子之和Sum=(1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn) 那么A^B = p1^(k1*…
数论知识点: 约数个数和约数和公式(例题:POJ1845 分治思想): 质因数分解 p1^k1xp2^k2xp3^k3...pn^kn 约数个数和:(1+k1)(1+k2)...(1+kn) 所有约数和=(1+p1+p1^2+...+p1^k1)...(1+pn+pn^2+...+pn^kn) 求和方法:因式分解+分治 或者等比数列求和+拓展GCD求逆元 欧拉定理:若GCD(x,y)≡1,则x^(φ(y))≡1(mode y) 特殊:费马小定理:若y是质数,且x,y互质,则x^(y-1)≡1 (…
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据,看看有没有结论. 2 3 4 5 6 7 8 9 10 11 12 (人数) 1 2 2 3 3 3 4 4 4 4 4 (比赛数) 发现比赛数的增长成斐波那契.维护一个前缀和即可. #include <bits/stdc++.h> #define ll long long using names…
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation…