SmartDo数据挖掘思路】的更多相关文章

SmartDo数据挖掘思路 数据挖掘部分: 数据挖掘的主要网址为: https://www.amazon.com/Best-Sellers/zgbs 挖掘部分为网址左边的入口,大约20多个,其中页面分级如下: 一级: https://www.amazon.com/Best-Sellers/zgbs 二级:(Home-Kitchen) https://www.amazon.com/Best-Sellers-Home-Kitchen/zgbs/home-garden/ref=zg_bs_nav_0…
最近看到有部分招聘信息,要求应聘者说一下分布式系统架构的思路.今天早晨正好有些时间,我也把我们实际在.net方面网站架构的演化路线整理一下,只是我自己的一些想法,欢迎大家批评指正. 首先说明的是.net下开源内容较少,并且也不是做并行数据库等基础服务,因此在这里什么Hadoop.Spark.ZooKeeper.dubbo等我们暂不去考虑. 一.最初假设的网站中,我们把应用系统网站.文件和数据库都放在一台服务器上,一台服务器包打天下. 二.随着业务扩展,一台服务器无法满足性能需求,将应用程序.数据…
一. 前言 经过了一个多月的努力,软件系统又添加了不少新功能.这些功能包括非常实用的数据导入导出,对触摸进行优化的画布和画笔工具,以及对一些智能分析的报告生成模块等.进一步加强了平台系统级的功能. 马上要进入研三了,这套系统和我本人一样,前途未卜.一方面,实验室要求重新以JAVA开发一套数据挖掘框架而放弃当前的.NET版本,我的思路是两边一起发展,优势互补,可惜后继无人.另一方面,马上毕业的我,未来做不做数据挖掘工作都是两说,在多方面的压力下,开发软件目前近似于奢侈的选择.但是,就算是为了自己心…
这一次带来了一系列新特新,同时我们将会从商业智能的角度讨论软件的需求 一. 批量任务向导 一个常用的需求是完成处理多个任务,可能是同一个需求以不同的参数完成多次,这类似批量分析某一问题:或者是不同的需求顺次完成,比如系统功能级测试.因此非常有必要加入该功能.由于系统有对“任务”级功能的支持,所以添加该功能很容易,加入一个任务队列,当上一任务完成时自动配置和启动下一任务即可. 我们以批量执行同一任务为例,看下下面的操作.点击“任务”菜单的“启动批量任务”向导,即可实现如下配置:选择要批量执行的任务…
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensemble learning)通过组合多个基分类器(base classifier)来完成学习任务,颇有点"三个臭皮匠顶个诸葛亮"的意味.基分类器一般采用的是弱可学习(weakly learnable)分类器,通过集成学习,组合成一个强可学习(strongly learnable)分类器.所谓…
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector Machines)是分类算法中应用广泛.效果不错的一类.<统计学习方法>对SVM的数学原理做了详细推导与论述,本文仅做整理.由简至繁SVM可分类为三类:线性可分(linear SVM in linearly separable case)的线性SVM.线性不可分的线性SVM.非线性(nonlin…
preface Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们. Python数据分析与挖掘技术概述 所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等. 数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升.…
数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的.事先未知的潜在有用信息,数据挖掘是目前国际上,数据库和信息决策领域的最前沿研究方向之一.因此分享一下很久以前做的一个小研究成果.也算是一个简单的数据挖掘处理的例子. 1.数据挖掘与聚类分析概述 数据挖掘一般由以下几个步骤: (l)分析问题:源数据数据库必须经过评估确认其是否符合数据挖掘标准.以决定预期结果,…
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes)属于无监督学习的一种,实现简单,没有迭代,学习效率高,在大样本量下会有较好的表现.但因为假设太强--假设特征条件独立,在输入向量的特征条件有关联的场景下并不适用. 1. 朴素贝叶斯算法 朴素贝叶斯分类器的主要思路:通过联合概率\(P(x,y) = P(x|y) P(y)\)建模,运用贝叶斯定理求解后…
前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大. 纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,国内大点的公司里百度,阿里,腾讯,网易,搜狐,华为(华为的岗位基本都是随机分配,机器学习等岗位基本面向的是博士)等…
机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是 机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的 不断发展,相信这方面的人才需求也会越…
MapReduce 支持的部分数据挖掘算法 MapReduce 能够解决的问题有一个共同特点:任务可以被分解为多个子问题,且这些子问题相对独立,彼此之间不会有牵制,待并行处理完这些子问题后,任务便被解决.在实际应用中,这类问题非常庞大,谷歌在论文中提到了MapReduce 的一些典型应用,包括分布式grep.URL 访问频率统计.Web 连接图反转.倒排索引构建.分布式排序等,这些均是比较简单的应用.下面介绍一些比较复杂的应用. (1)TopK 问题 我们要选择一个酒店入住,有a-g个备选,每个…
阿里巴巴CTO即阿里云负责人王坚博士说过一句话:云计算和大数据,你们都理解错了.   实际上,对于大数据究竟是什么业界并无共识.大数据并不是什么新鲜事物.信息革命带来的除了信息的更高效地生产.流通和消费外,还带来数据的爆炸式增长.“引爆点”到来之后,人们发现原有的零散的对数据的利用造成了巨大的浪费.移动互联网浪潮下,数据产生速度前所未有地加快.人类达成共识开始系统性地对数据进行挖掘.这是大数据的初心.数据积累的同时,数据挖掘需要的计算理论.实时的数据收集和流通通道.数据挖掘过程需要使用的软硬件环…
机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 转自http://www.cnblogs.com/tornadomeet/p/3395593.html 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大…
SPSS Modeler是业界极为著名的数据挖掘软件,其前身为SPSS Clementine.SPSS Modeler内置丰富的数据挖掘模型,以其强大的挖掘功能和友好的操作习惯,深受用户的喜爱和好评,成为众多知名企业在数据挖掘项目上的软件产品选择. 本课程以SPSS Modeler为应用软件,以数据挖掘项目生命周期为线索,以实际数据挖掘项目为例,讲解了从项目商业理解开始,到最后应用Modeler软件实现的挖掘过程. 作为数据挖掘项目的重要干系人,数据挖掘专家需要对数据挖掘项目的生命周期.整体管理…
老师简介: Gino老师,即将步入不惑之年,早年获得名校数学与应用数学专业学士和统计学专业硕士,有海外学习和工作的经历,近二十年来一直进行着数据分析的理论和实践,数学.统计和计算机功底强悍. 曾在某一世界500强公司核心部门担任高级主管负责数据建模和分析工作,在实践中攻克统计建模和数据分析难题无数,数据处理与分析科学精准,在实际应用中取得良好的效果. Gino老师担任数据分析培训师多年,探索出一套以实例讲解带动统计原理理解和软件操作熟悉的方法,授课的学生能迅速理解统计原理并使用统计软件独立开展数…
原文地址:http://blog.csdn.net/aladdina/article/details/4141177 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的…
正好刚帮某电信行业完成一个数据挖掘工作,其中的RFM模型还是有一定代表性,就再把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好满足RFM模型的交易数据要求. 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency).消费频率(Frequency).消费金额(Monetary). 我早期两篇博文已详述了RFM思想和IBM Modeler操作…
在使用机器算法之前,我们先把数据做下预处理,先把特征和标签拆分出来 housing = strat_train_set.drop("median_house_value",axis=1) #原始数据集并未发生改变 housing_labels=strat_train_set["median_house_value"].copy() 数据清洗 大多数机器学习算法是不能在有缺失值的数据集上面运行的,而本数据集特征total_bedrooms是存在数据缺失现象的,所以就需…
之前有小伙伴私信我叫我说说这次比赛C题的思路,怎么写的,我就写篇博客说说吧,仅供参考! 针对C题,该题目比较综合,是一个成熟的数模赛题,与国赛的相似性较高.一般而言,第一问难度较低,题目要求进行数据挖掘,找出影响移动端产品发展的主要因素,我们可以把问题简化为从多因子中提取若干主要因子进行分析.然而通过分析数据我们发现数据包含抽象与具体两种,数学建模顾名思义一定是采用数学语言进行的,所以第一步要做的就是量化分析,将抽象指标具体化,量化模型有多种,具体可以自己查找.对于多因子提取采用的模型种类主要有…
这篇文章主要是介绍下C题的解题思路,首先我们对这道C题进行一个整体的概括,结构如下: C题:经济类 第一问:发现危险人群. 发现:欺诈的方式开始.雇佣或浪漫的承诺. 数据→确定特定的经济萧条地区→确定最危险的人群→针对这些人群的预防活动 被贩卖的因素(卷入人口贩运的风险因素): 贫困.失业.移民.逃避政治冲突.战争. 第二问:受害者身份和位置 发现:人口贩运网:动态的 贩毒者:频繁地改变分布.运输路线 (以避免被发现) ↓(信息不完整) 执法人员和分析人员→试图识别.摧毁 人口贩卖网络→(信息不…
数据行业有一句很经典的话--"垃圾进,垃圾出"(Garbage in, Garbage out, GIGO),意思就是,如果使用的基础数据有问题,那基于这些数据得到的任何产出都是没有价值的.而对于数据分析挖掘而言,只有一份高质量的基础数据,才可能得到正确.有用的结论.本文主要介绍数据质量检查的基本思路和方法,并基于Python进行具体实现. 另外,数据质量检查是数据治理中的一个重要课题,涉及内容广,由于笔者经验水平有限,本文不做涉及,只从分析挖掘中的数据质量检查工作说起. 数据质量检查…
http://blog.csdn.net/pipisorry/article/details/49052255 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之社交网络之社区检测:高级技巧-线性代数方法 Communities in Social Networks:  Intuitively, "communities" are sets of individuals in a network like Fa…
http://blog.csdn.net/pipisorry/article/details/48914067 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之关联规则Apriori算法的改进:非hash方法 - 大数据集下的频繁项集:挖掘随机采样算法.SON算法.Toivonen算法 Apriori算法的改进:大数据集下的频繁项集挖掘 1. 前面所讨论的频繁项都是在一次能处理的情况.如果数据量过大超过了主存的大小,这…
数据挖掘进阶之序列模式挖掘GSP算法 绪 继续数据挖掘方面算法的讲解,前面讲解了数据挖掘中关联规则算法FP-Growth的实现.此篇博文主要讲解基于有趣性度量标准的GSP序列模式挖掘算法.有关论文后期进行补充.实现思路与前面优化的FP-Growth算法一致,首先实现简单的GSP算法,通过认真阅读源码,在理解的基础之上进行优化.优化后的算法将在性能方面与原算法进行对比,以此突出此算法的优良性能.下面进行简要介绍: 原理介绍 GSP算法是一种非常有效的序列模式挖掘算法,该算法使用一种称作为逐层搜索的…
数据挖掘进阶之关联规则挖掘FP-Growth算法 绪 近期在写论文方面涉及到了数据挖掘,需要通过数据挖掘方法实现软件与用户间交互模式的获取.分析与分类研究.主要涉及到关联规则与序列模式挖掘两块.关联规则挖掘使用基于有趣性度量标准的FP-Growth算法,序列模式挖掘使用基于有趣性度量标准的GSP算法.若想实现以上优化算法,首先必须了解其基本算法,并编程实现.关键点还是在于理解算法思想,只有懂得了算法思想,对其进行优化操作易如反掌.源代码方面,其实是自己从网络中查找并进行阅读,在理解的基础上进行优…
特征处理是特征工程的核心部分,特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样式确定的步骤,更多的是工程上的经验和权衡,因此没有统一的方法,但是sklearn提供了较为完整的特征处理方法,包括数据预处理,特征选择,降维等.首次接触到sklearn,通常会被其丰富且方便的算法模型库吸引,但是这里介绍的特征处理库也非常强大! 经过前人的总结,特征工程已经形成了接近标准化的流程,如下图所示(此图来自此网友,若侵权,联系我,必删除) 1 特征来源——导入数据 在做数据分析的时候,特征…
能来看我这篇博客的朋友,想必大家都知道,Weka采用Java编写的,因此,具有Java“一次编译,到处运行”的特性.支持的操作系统有Windows x86.Windows x64.Mac OS X.Linux等.这里不多赘述.  Weka系统安装一共分为: 1.安装Weka所需系统要求 下表,列举了运行Weka的特定版本对Java版本的要求. Java 1.4 1.5 1.6 Weka <3.4.0 X X X 3.4.x X X X 3.5.x 3.5.0-3.5.2 >3.5.2 r289…
今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处理,另一方面在进行特征工程时可以给我们一些思路.所以这样一个过程在数据挖掘中还是蛮有用的,相信大家在网上看过不少数据挖掘比赛的Kernel,一般一上来都先是个数据探索的过程.之前听过一个老师讲课,说数据探索过程其实可有可无,直接预处理猛搞,但典型的口嫌体正直,在演示一个比赛的流程时,还是先进行了汇总…
CIKM Competition数据挖掘竞赛夺冠算法陈运文 背景 CIKM Cup(或者称为CIKM Competition)是ACM CIKM举办的国际数据挖掘竞赛的名称.CIKM全称是International Conference on Information and Knowledge Management,属于信息检索和数据挖掘领域的国际著名学术会议,由ACM SIGIR分会(ACM Special Interest Group on Information Retrieval)主办.…