pandas基础操作】的更多相关文章

创建一个Series,同时让pandas自动生成索引列 创建一个DataFrame数据框 查看数据 数据的简单统计 数据的排序 选择数据(类似于数据库中sql语句) 另外可以使用标签来选择 通过位置获取数据 布尔值索引 设定数值(类似于sql update 或者add) 缺失值处理 数据操作 统计个数与离散化 pandas 处理字符串(单独一个大的章节,这人不做详述) 数据合并 首先看concat合并数据框 merge方式合并(数据库中的join) Append方式合并数据 分组操作Groupb…
```python import pandas as pd import numpy as np ``` ```python s = pd.Series([1,3,6,np.nan,44,1]) s ------------ 0 1.0 1 3.0 2 6.0 3 NaN 4 44.0 5 1.0 dtype: float64 ``` ```python dates = pd.date_range(',periods=6) dates ------------ DatetimeIndex(['2…
Pandas的基础操作(一)——矩阵表的创建及其属性 (注:记得在文件开头导入import numpy as np以及import pandas as pd) import pandas as pd import numpy as np #创建一个Pandas序列 s = pd.Series([1, 3, 6, np.nan, 44, 1]) # print(s) # 0 1.0 # 1 3.0 # 2 6.0 # 3 NaN # 4 44.0 # 5 1.0 # dtype: float64…
在家为国家做贡献太无聊,不如跟我一起学点 Python 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 引言 最近这个系列有段时间没更新,理由也就不找了,总结就一点,懒!懒得学习! 我就是这么一个能勇于发现并且承认错误…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 引言 上一篇文章我们介绍如何在 Pandas 一些基础的查看数据的操作,但是官方更推荐我…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…
一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 fill_value 参数指定填充值. 例如:   fill_value 会让所有的缺失值都填充为同一个值,如果不想这样而是用相邻的元素(左或者右)的值填充,则可以用 method 参数,可选的参数值为 ffill 和 bfill,分别为用前值填充和用后值填充: 针对 DataFrame   重新…
numpy基础 import numpy as np 定义array In [156]: np.ones(3) Out[156]: array([1., 1., 1.]) In [157]: np.ones((3,5)) Out[157]: array([[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]) In [158]: In [158]: np.zeros(4) Out[158]: array([0., 0.…
这一节是承接上一节的内容, 依然是基于时间的数据分析, 接下来带大家理解关于 date_range 的相关用法. 首先, 引入数据文件: import pandas as pd df = pd.read_csv('/Users/rachel/Sites/pandas/py/pandas/15_ts_date_range/aapl_no_dates.csv') df.head() 输出:这个文件的数据跟上一节用到的数据是一模一样的(大家可以对照一下), 只是时间列被去掉了. 这样设计是因为我们要引…
Hello, 大家好, 昨天说了我会再更新一个关于 Pandas 基础知识的教程, 这里就是啦......Pandas 被广泛应用于数据分析领域, 是一个很好的分析工具, 也是我们后面学习 machine learning 的一个必备技能. 因为我们后面会经常提到和用到一个词 --- Dataframe(为了方便日后学习, 这里就不勉强翻译了), 首先想介绍一下它的概念:Dataframe 是 Pandas 中的一个主要对象. 它以行和列的形式展示数据, 就是很接近于 excel 表的样子. 首…