转载请标明出处:http://blog.csdn.net/bigbigdata/article/details/47293263 本文基于Spark 1.3.1 先上一些stage相关的知识点: DAGScheduler将Job分解成具有前后依赖关系的多个stage DAGScheduler是依据ShuffleDependency划分stage的 stage分为ShuffleMapStage和ResultStage.一个Job中包括一个ResultStage及多个ShuffleMapStage…
转载请标明出处:http://blog.csdn.net/bigbigdata/article/details/47310657 DAGScheduler通过调用submitStage来提交stage.实现例如以下: private def submitStage(stage: Stage) { val jobId = activeJobForStage(stage) if (jobId.isDefined) { logDebug("submitStage(" + stage + &q…
Spark中job由action动作生成,那么stage是如何划分的呢?一般的解答是根据宽窄依赖划分.那么我们深入源码看看吧 一个action 例如count,会在多次runJob中传递,最终会到一个函数 dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)dagScheduler是DAGScheduler的一个实例,因此,后面的工作都交给DAGSchedul…
每个job被划分为多个stage.划分stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个stage,从而避免多个stage之间的消息传递开销. http://spark.apache.org/docs/latest/rdd-programming-guide.html [Spark actions are executed through a set of stages, separated by distributed “shuffle” operations. …
窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用,表现为 一个父RDD的分区对应于一个子RDD的分区 两个父RDD的分区对应于一个子RDD 的分区. 宽依赖指子RDD的每个分区都要依赖于父RDD的所有分区,这是shuffle类操作 Stage: 一个Job会被拆分为多组Task,每组任务被称为一个Stage就像Map Stage, Reduce Stage.Stage的划分,简单的说是以shuffle和result这两种类型来划分.在Spark中有两类task,一类是shuffleMap…
Spark是一个基于内存的分布式计算框架.执行在其上的应用程序,依照Action被划分为一个个Job.而Job提交执行的总流程.大致分为两个阶段: 1.Stage划分与提交 (1)Job依照RDD之间的依赖关系是否为宽依赖.由DAGScheduler划分为一个个Stage.并将每一个Stage提交给TaskScheduler: (2)Stage随后被提交,并由TaskScheduler将每一个stage转化为一个TaskSet: 2.Task调度与运行:由TaskScheduler负责将Task…
DAGScheduler概述:是一个面向Stage层面的调度器: 主要入参有: dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal,resultHandler, localProperties.get) rdd: final RDD: cleanedFunc: 计算每个分区的函数: resultHander: 结果侦听器: 主要功能如下: 1.接收用户提交的job; 2.将job根据类型划分为不同的stag…
话说在<Spark源代码分析之五:Task调度(一)>一文中,我们对Task调度分析到了DriverEndpoint的makeOffers()方法.这种方法针对接收到的ReviveOffers事件进行处理.代码例如以下: // Make fake resource offers on all executors     // 在全部的executors上提供假的资源(抽象的资源.也就是资源的对象信息,我是这么理解的)     private def makeOffers() {       /…
略微了解Spark源代码的人应该都知道SparkContext,作为整个Project的程序入口,其重要性不言而喻,很多大牛也在源代码分析的文章中对其做了非常多相关的深入分析和解读.这里,结合自己前段时间的阅读体会,与大家共同讨论学习一下Spark的入口对象-天堂之门-SparkContex. SparkContex位于项目的源代码路径\spark-master\core\src\main\scala\org\apache\spark\SparkContext.scala中,源文件包括Spark…
豌豆夹Redis解决方式Codis源代码剖析:Proxy代理 1.预备知识 1.1 Codis Codis就不详细说了,摘抄一下GitHub上的一些项目描写叙述: Codis is a proxy based high performance Redis cluster solution written in Go/C, an alternative to Twemproxy. It supports multiple stateless proxy with multiple redis in…