转载请注明本文链接:http://www.cnblogs.com/EE-NovRain/p/3810737.html 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和数据流,google先后三年时间(2010年-2013年)从理论研究到实际工程化实现的 FTRL(Follow-the-regularized-Leader) 算法,在处理诸如逻辑回归之类的带非光滑正则化项(例如1范数,做模型复杂度控…
各大公司广泛使用的在线学习算法FTRL详解 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和在线数据流,google先后三年时间(2010年-2013年)从理论研究到实际工程化实现的FTRL(Follow-the-regularized-Leader)算法,在处理诸如逻辑回归之类的带非光滑正则化项(例如1范数,做模型复杂度控制和稀疏化)的凸优化问题上性能非常出色,据闻国内各大互联网公司都第一时间应…
Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 目录 Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 0x00 摘要 0x01概念 1.1 逻辑回归 1.1.1 推导过程 1.1.2 求解 1.1.3 随机梯度下降 1.2 LR的并行计算 1.3 传统机器学习 1.4 在线学习 1.5 FTRL 1.5.1 regret & sparsity 1.5.2 FTRL的伪代码 1.5.3 简要理解 0x02 示例代码 0x03 问题 0x04 总体逻辑 0xFF 参考 0…
Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 2.1.1 训练模型 2.1.2 加载模型 2.2 分割高维向量 2.3 迭代训练 2.3.1 Flink Stream迭代功能 2.3.2 迭代构建 2.3.2.1 迭代的输入 2.3.2.2 迭代的反馈 2.3.3 迭代体 CalcTask / ReduceTask 2.3.3.1 迭代初始化…
FTRL由google工程师提出,在13的paper中给出了伪代码和实现细节,paper地址:http://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf 本文旨在算法的应用,推导和优化过程详见paper,推荐一篇博文http://www.cnblogs.com/EE-NovRain/p/3810737.html,有兴趣的可以详读. per-coordinate FTRL_Proximal的伪代码如下: α根据数据和特征自适…
前面文章我们已经知道 Flink 是什么东西了,安装好 Flink 后,我们再来看下安装路径下的配置文件吧. 安装目录下主要有 flink-conf.yaml 配置.日志的配置文件.zk 配置.Flink SQL Client 配置. flink-conf.yaml 基础配置 # jobManager 的IP地址 jobmanager.rpc.address: localhost # JobManager 的端口号 jobmanager.rpc.port: 6123 # JobManager J…
在线学习想要解决的问题 在线学习 ( \(\it{Online \;Learning}\) ) 代表了一系列机器学习算法,特点是每来一个样本就能训练,能够根据线上反馈数据,实时快速地进行模型调整,使得模型及时反映线上的变化,提高线上预测的准确率.相比之下,传统的批处理方式需要一次性收集所有数据,新数据到来时重新训练的代价也很大,因而更新周期较长,可扩展性不高. 一般对于在线学习来说,我们致力于解决两个问题: 降低 regret 和提高 sparsity.其中 regret 的定义为: \[\te…
跳cortex-m0——思想转变>之后又一入门级文章,在此不敢请老鸟们过目.不过要是老鸟们低头瞅了一眼,发现错误,还请教育之,那更是感激不尽.与Cortex在某些操作方式上的异同,让自己对Cortex有了更深一步的了解,所以在此分享,以期对我们这些“51菜”在学习Cortex上有所帮助,文中有不对之处,还请大虾们指正. 正文 与新唐操作方式).在51上,我们向外写数据主要是通过P0,P1,P2,P3口,且在每个端口上分别有8个引脚.(在这里我们用端口代表P1等,用引脚代表P1^0等):而新唐上,…
转自:http://flyingdutchman.iteye.com/blog/1878775#bc2337280 Hadoop深入学习:MapTask详解 博客分类: Hadoop MapTask执行流程内存缓冲区spillCombine           在本节中,我们主要来学习MapTask的内部实现.                   整体执行流程           如上图示,MapTask的整个处理流程分五个阶段:          ●read阶段:通过RecordReader从…
(总结)Linux下的暴力密码在线破解工具Hydra详解 学习了:https://blog.csdn.net/yafeichang/article/details/53502869…