【Learning】多项式的一些东西】的更多相关文章

FFT 坑 NTT 将\(FFT\)中的单位复数根改成原根即可. 卡常版NTT模版 struct Mul { int Len; int wn[N], Lim; int rev[N]; inline void getReverse(int * a) { static int rev[N]; rev[0] = 0; for (register int i = 0; i < Len; i++) { rev[i] = (rev[i>>1] >> 1) | ((i&1) ? (…
众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个应该是多项式各种运算中的基础了. 首先,在学习多项式乘法之前,你需要学会: 复数 我们定义虚数单位 \(i\) 为满足 \(x^2=-1\) 的 \(x\). 那么所有的复数都可以表示为 \(z=a+bi\) 的形式,其中 \(a,b\) 均为实数. 复数的加减直接对实部虚部相加减就行了. 复数的乘…
简单来说就是一个计算多项式乘法的东西呀.. 以下内容基本都是在大黑书<算法导论>上的.. 总述 对于项数为$n$的多项式$A(x)$和项数为$m$的多项式$B(x)$,可以如此表达: $$A(x)=A_0+A_1x+A_2x^2+A_3x^3+...+A_{n-1}x^{n-1}$$ $$B(x)=B_0+B_1x+B_2x^2+B_3x^3+...+B_{m-1}x^{m-1}$$ 把这两个多项式相乘可得到项数为$(n+m-1)$的多项式$C(x)$: 其中对于其任意系数$C_i$有$C_i…
题目 传送门 思路&做法 我们可以用\(v_i\)表示\(i\)在\(c\)中出现了几次, 用\(f_i\)表示权值为\(i\)的神犇树的总数, 于是 \[ f_x = \sum_{i = 0}^{x}v_i \bigg( \sum_{j = 0}^{x-i}f_jf_{x-i-j} \bigg) \] \[ f_0 = 1 \] 然后我们设\(v\)的生成函数为\(V = \sum_{i = 0} ^{\infty}v_ix^i\), 设\(f\)的生成函数为\(F = \sum_{i = 0…
[吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的文字好像有点多呀qwq啊话痨是真的qwq) [正题] 一些预备知识(有了解的就可以直接跳啦,mainly from 算导) fft的话,用来解决与多项式乘法有关的问题 关于多项式 一个以x为变量的多项式定义在一个代数域$F$上,将函数$A(x)$表示为形式和: $A(x) = \sum\limits…
(首先要%miskcoo,这位dalao写的博客(这里)实在是太强啦qwq大部分多项式相关的知识都是从这位dalao博客里面学的,下面这篇东西是自己对其博客学习后的一些总结和想法,大部分是按照其博客里面的思路来分析的,并添加了一些自己的理解) 多项式求逆(元) 定义 对于一个多项式\(A(x)\),如果存在一个多项式\(B(x)\),满足\(B(x)\)的次数小于等于\(A(x)\)且\(A(x)B(x)\equiv 1(mod\ x^n)\),那么我们称\(B(x)\)为\(A(x)\)在模\…
约定的记号 对于一个多项式\(A(x)\),若其最高次系数不为零的项是\(x^k\),则该多项式的次数为\(k\). 记为\(deg(A)=k\). 对于\(x\in(k,+ \infty)\),称\(x\)都为\(A(x)\)的次数界. 但一般地,我们都使用\(k+1\)作为\(A(x)\)的次数界. 多项式求逆 给定多项式\(A(x)\),求其在模\(x^n\)意义下的逆多项式\(B(x)\),使得 \[ \begin{equation} \label{eqn1} A(x)B(x)\equi…
简介: FFT主要运用于快速卷积,其中一个例子就是如何将两个多项式相乘,或者高精度乘高精度的操作. 显然暴搞是$O(n^2)$的复杂度,然而FFT可以将其将为$O(n lg n)$. 这看起来十分玄学,因为怎么看它们的相乘操作都逃不过$O(n^2)$,FFT是如何再减少复杂度的呢? 讲到FFT就不可避免地出现公式,但实际上它们都是比较容易理解的. 全局思路 设两个次数界均为$n$的多项式$\begin{aligned}A(x)&=a_0x^0+a_1x^1+a_2x^2+...+a_{n-1}x…
概述 多项式开跟是一个非常重要的知识点,许多多项式题目都要用到这一算法. 用快速数论变换,多项式求逆元和倍增法可以在$O(n log n)$的时间复杂度下求出一个$n$次多项式的开根. 前置技能 快速数论变换(NTT),多项式求逆元,二次剩余. 多项式的开根 给定一个多项式$A(x)$,其次数为$deg_A$,若存在一个多项式$B(x)$,使其满足$deg_B≤deg_A$,且$ B^2(x) \equiv A(x) (mod\ x^n)$,则$B(x)$即为$A(x)$在模$x^n$意义下的的…
1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1.1.3    如何选择K值 1.1.4    Spark MLlib 实现 k-means 算法 1.2    Mixture of Gaussians and the EM algorithm 1.3    The EM Algorithm 1.4    Principal Components…
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 a cleverly-chosen optimization objective优化目标, one of the most widely used learning algorithms today. 第一节 向量的内积(SVM的基本数学知识) Support Vector Machines 支持向…
In Week 6, you will be learning about systematically improving your learning algorithm. The videos for this week will teach you how to tell when a learning algorithm is doing poorly, and describe the 'best practices' for how to 'debug' your learning…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) Octave 4.0.0 安装 win7(文库) Octave学习笔记(文库) octave入门(文库) WIN7 64位系统安装JDK并配置环境变量(总是显示没有安装Java) MathWorks This week we're covering linear regression with mul…
本笔记为Coursera在线课程<Machine Learning>中的神经网络章节的笔记. 八.神经网络:表述(Neural Networks: Representation) 本节主要讨论一种叫做神经网络的机器学习算法.首先讨论神经网络的表层结构,在后续的课程中再讨论具体的学习算法.神经网络其实是一个比较古老的算法,它沉寂过一点时间,但现在又成为了许多机器学习的首选技术. 8.1 非线性假设 参考视频: 8 - 1 - Non-linear Hypotheses (10 min).mkv…
机器学习系统设计(Building Machine Learning Systems with Python)- Willi Richert Luis Pedro Coelho 总述 本书是 2014 的,看完以后才发现有第二版的更新,2016.建议阅读最新版,有能力的建议阅读英文版,中文翻译有些地方比较别扭(但英文版的书确实是有些贵). 我读书的目的:泛读主要是想窥视他人思考的方式. 作者写书的目标:面向初学者,但有时间看看也不错.作者说"我希望它能激发你的好奇心,并足以让你保持渴望,不断探索…
说在前面:前几天,公众号不是给大家推送了第二篇关于决策树的文章嘛.阅读过的读者应该会发现,在最后排版已经有点乱套了.真的很抱歉,也不知道咋回事,到了后期Markdown格式文件的内容就解析出现问题了,似乎涉及到Latex就会多多少少排版错乱???暂时也没什么比较好的解决办法,如果有朋友知道的可以联系下Taoye,长时间用Markdown + Latex码文已成习惯了,关于机器学习文章的内容,更好的阅读体验,大家可以跳转至我在Cmd Markdown平台发布的内容,也可前往我的掘金主页,阅读体验都…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
    如何写出高质量的技术博客?答案是:如果你想,就一定能写出高质量的技术博客.看起来很唯心,但这就是事实.有足够愿力去做一件目标明确,有良好反馈系统的事情往往很简单.就是不停地训练,慢慢地,你自己就能找出规律和技巧.所以,要写出高质量的技术博客,首先要解决为什么要写的问题. 为什么要写 我一直很喜欢的一个学习方法是 Learning by teaching 一个课题,如果你能给不懂的人解释清楚,说明你对这个课题的理解足够深入.把一个课题展开来写,你可能会发现某些方面你还写不清楚,这往往说明你…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
第一部分 字典学习以及稀疏表示的概要 字典学习(Dictionary Learning)和稀疏表示(Sparse Representation)在学术界的正式称谓应该是稀疏字典学习(Sparse Dictionary Learning).该算法理论包含两个阶段:字典构建阶段(Dictionary Generate)和利用字典(稀疏的)表示样本阶段(Sparse coding with a precomputed dictionary).这两个阶段(如下图)的每个阶段都有许多不同算法可供选择,每种…
多视图学习(multi-view learning) 前期吹牛:今天这一章我们就是来吹牛的,刚开始老板在和我说什么叫多视图学习的时候,我的脑海中是这么理解的:我们在欣赏妹子福利照片的时候,不能只看45度角的吧,要不那样岂不是都是美女了,这还得了.所以我们要看各个角度的照片,打击盗版美女,给大家创建一个真诚的少点欺骗的和谐世界.所以说,多视图学习就是360度,全方位无死角的欣赏(学习)然后得到最接近真实值的判定. 话说那么一天啊,一个人和一个蚂蚁在对话,他们看着一个米饭粒,人说,这个米饭粒胖嘟嘟的…
1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性.最初,我是在参加校外竞赛时接触到随机森林算法的.最近几年的国内外大赛,包括2013年百度校园电影推荐系统大赛.2014年阿里巴巴天池大数据竞赛以及Kaggle数据科学竞赛,参赛者对随机森林的使用占有相当高的比例.此外,据我的个人了解来看,一大部…
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning b…
之前上了台大的机器学习基石课程,里面用的教材是<Learning from data>,最近看了看觉得不错,打算深入看下去,内容上和台大的课程差不太多,但是有些点讲的更深入,想了解课程里面讲什么的童鞋可以看我之前关于课程的第一章总结列表: 机器学习定义及PLA算法 机器学习的分类 机器学习的可能性   我打算边看书边复习讲义,然后用自己的话把每章能看懂的点总结下,欢迎大家指正.由于用语会尽量口语保证易懂,所以会有失严谨性,具体的细节可以看本书.<Learning from data>…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
(原文地址:http://www.cnblogs.com/idealer3d/p/LearningRaphaelJSVectorGraphics.html) 前面3篇博文里面,我们讲解了一本叫做<Instant RaphaelJS Starter>的书,那本书里我们将RaphaelJS里面的基本内容都进行了比较详细的讲解.但是,坦白的说,那本书通俗易懂却太过浅显.现在我们下一本叫做<Learning Raphael JS Vector Graphics>的书,算是上一本的进阶.当然…
原文发布于我的微信公众号: GeekArtT. 从CFA到如今的Data Science/Deep Learning的学习已经有一年的时间了.期间经历了自我的兴趣.擅长事务的探索和试验,有放弃了的项目,有新开辟的路线,有有始无终的遗憾,也有还在继续的坚持.期间有数不清的弯路.失落,有无法一一道明的挫败和孤独,也有每日重复单调训练而积累起来的自信与欣喜.和朋友聊天让我意识到,将我目前所摸索到的一些材料和路径分享出来,使其他想要进入这个领域的人或者仅仅是兴趣爱好者能够少走一些弯路,大概是有些意义的.…
头脑一热,坐几十个小时的硬座北上去天津大学去听了门4天的深度学习课程,课程预先的计划内容见:http://cs.tju.edu.cn/web/courseIntro.html.上课老师为微软研究院的大牛——邓力,群(qq群介绍见:Deep learning高质量交流群)里面有人戏称邓力(拼音简称DL)老师是天生注定能够在DL(Deep learning)领域有所成就的,它的个人主页见:http://research.microsoft.com/en-us/people/deng/.这次我花费这么…