版权声明:本文出自汪磊的博客,未经作者允许禁止转载. 存储键值对我们首先想到HashMap,它的底层基于哈希表,采用数组存储数据,使用链表来解决哈希碰撞,它是线程不安全的,并且存储的key只能有一个为null,在安卓中如果数据量比较小(小于一千),建议使用SparseArray和ArrayMap,内存,查找性能方面会有提升,如果数据量比较大,几万,甚至几十万以上还是使用HashMap吧.本篇只详细分析HashMap的源码,SparseArray和ArrayMap不在本篇讨论范围内,后续会单独分析…
本篇我们讨论如何运行或者运用SVM. 在高斯核函数之外我们还有其他一些选择,如:多项式核函数(Polynomial Kernel)字符串核函数(String kernel)卡方核函数( chi-square kernel)直方图交集核函数(histogram intersection kernel)等等... 这些核函数的目标也都是根据训练集和地标之间的距离来构建新特征,这些核函数需要满足Mercer's 定理,才能被支持向量机的优化软件正确处理. 多类分类问题 假设我们利用之前介绍的一对多方法…
本来看了一天的分类器方面的代码,乱乱的,索性再把最基础的概念拿过来,现总结一下机器学习的算法吧! 1.机器学习算法简述 按照不同的分类标准,可以把机器学习的算法做不同的分类. 1.1 从机器学习问题角度分类 我们先从机器学习问题本身分类的角度来看,我们可以分成下列类型的算法: 监督学习算法 机器学习中有一大部分的问题属于『监督学习』的范畴,简单口语化地说明,这类问题中,给定的训练样本中,每个样本的输入x都对应一个确定的结果y,我们需要训练出一个模型(数学上看是一个x→y的映射关系f),在未知的样…
一.概述 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见.机器学习处理问题时又何尝不是如此?这就是元算法(meta-algorithm)背后的思路.元算法是对其他算法进行组合的一种方式.接下来我们将集中关注一个称作AdaBoost的最流行的元算法.由于某些人认为AdaBoost是最好的监督学习的方法,所以该方法是机器学习工具箱中最强有力的工具之一. 本章首先讨论不同分类器的集成方法,然后主要关注boosting方法及其代表分类器Adaboost.再接下来,我们就会建立一个单层决…
1为什么我们需要KNN 现在为止,我们都知道机器学习模型可以做出预测通过学习以往可以获得的数据. 因为KNN基于特征相似性,所以我们可以使用KNN分类器做分类. 2KNN是什么? KNN K-近邻,是一种简单的机器学习算法,目前被广泛使用分类.KNN做分类基于基于与 将要分类的点 的邻居的类别. KNN 存储所有可以获得的例子,并基于相似性的度量做出分类 (也就是说和仓库里的特征进行对比,谁相近 就判为哪一类.) k在KNN中是一个参数,指的是在多数表决过程中要包括的最近的邻居的数量(这里的意思…
本章讲决策树 决策树,一种多功能且强大的机器学习算法.它实现了分类和回归任务,甚至多输出任务. 决策树的组合就是随机森林. 本章的代码部分不做说明,具体请到我的GitHub上自行获取. 决策树的每个节点都是一种属性的判断,每个分支是判断结果的输出,是一种监督学习的算法. 决策树的类别有很多,最广泛使用的决策树的生成算法是CART(Classification And Regression Tree). CART: 首先,使用单个特征k和阈值h将训练集分为两个子集.对于上述两个参数的选择,需要经过…
七种算法包括: 线性回归算法 Logistic 回归算法 感知器 K 最近邻算法 K 均值聚类算法 含单隐层的神经网络 多项式的 Logistic 回归算法 01 线性回归算法 在线性回归中,我们想要建立一个模型,来拟合一个因变量 y 与一个或多个独立自变量(预测变量) x 之间的关系. 给定: 数据集 是d-维向量 是一个目标变量,它是一个标量 线性回归模型可以理解为一个非常简单的神经网络: 它有一个实值加权向量 它有一个实值偏置量 b 它使用恒等函数作为其激活函数 线性回归模型可以使用以下方…
小姐姐带你一起学:如何用Python实现7种机器学习算法(附代码) Python 被称为是最接近 AI 的语言.最近一位名叫Anna-Lena Popkes的小姐姐在GitHub上分享了自己如何使用Python(3.6及以上版本)实现7种机器学习算法的笔记,并附有完整代码.所有这些算法的实现都没有使用其他机器学习库.这份笔记可以帮大家对算法以及其底层结构有个基本的了解,但并不是提供最有效的实现. 小姐姐她是德国波恩大学计算机科学专业的研究生,主要关注机器学习和神经网络. 七种算法包括: 线性回归…
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景 决策书算法是一种逼近离散数值的分类算法,思路比較简单,并且准确率较高.国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Data Mining)在2006年12月评选出了数据挖掘领域的十大经典算法中,C4.5算法排名第一.C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. 算法的主要思想就是将数据集依照特…
机器学习算法(二): 基于鸢尾花数据集的朴素贝叶斯(Naive Bayes)预测分类 项目链接参考:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc 1. 实验室介绍 1.1 实验环境 1. python3.7 2. numpy >= '1.16.4' 3. sklearn >= '0.23.1' 1.2 朴素贝叶斯的介绍 朴素贝叶斯算法(Naive Bayes, NB) 是应用最为广泛的分类算法之一.它是基于贝叶斯定义…