ResNet(Residual Neural Network),微软研究院 Kaiming He等4名华人提出.通过Residual Unit训练152层深神经网络,ILSVRC 2015比赛冠军,3.57% top-5错误率,参数量比VGGNet低,效果非常突出.ResNet结构,极快加速超深神经网络训练,模型准确率非常大提升.Inception V4,Inception Module.ResNet结合.ResNet推广性好. 瑞十教授Schmidhuber(LSTM网络发明者,1997年)提…
前言 Face book AI research(FAIR)吴育昕-何恺明联合推出重磅新作Group Normalization(GN),提出使用Group Normalization 替代深度学习里程碑式的工作Batch normalization,本文将从以下三个方面为读者详细解读此篇文章: What's wrong with BN ? How GN work ? Why GN work ? Group Normalizition是什么 一句话概括,Group Normalization(G…
前言: 归一化相关技术已经经过了几年的发展,目前针对不同的应用场合有相应的方法,在本文将这些方法做了一个总结,介绍了它们的思路,方法,应用场景.主要涉及到:LRN,BN,LN, IN, GN, FRN, WN, BRN, CBN, CmBN等. 本文又名"BN和它的后浪们",是因为几乎在BN后出现的所有归一化方法都是针对BN的三个缺陷改进而来,在本文也介绍了BN的三个缺陷.相信读者会读完此文会对归一化方法有个较为全面的认识和理解. LRN(2012) 局部响应归一化(Local Res…
Batch Normalization(简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize 太小时效果不佳.对 RNN 等动态网络无法有效应用 BN 等.针对 BN 的问题,最近两年又陆续有基于 BN 思想的很多改进 Normalization 模型被提出.BN 是深度学习进展中里程碑式的工作之一,无论是希望深入了解深度学习,还是在实践中解决实际问题,BN 及一系列改进 Normaliza…
来源:https://www.chainnews.com/articles/504060702149.htm 机器之心专栏 作者:张俊林 Batch Normalization (简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize 太小时效果不佳.对 RNN 等动态网络无法有效应用 BN 等.针对 BN 的问题,最近两年又陆续有基于 BN 思想的很多改进 Normalization 模型被…
博客:blog.shinelee.me | 博客园 | CSDN 写在前面 论文状态:Published in CVIU Volume 161 Issue C, August 2017 论文地址:https://arxiv.org/abs/1606.02228 github地址:https://github.com/ducha-aiki/caffenet-benchmark 在这篇文章中,作者在ImageNet上做了大量实验,对比卷积神经网络架构中各项超参数选择的影响,对如何优化网络性能很有启发…
零.参考资料 有关FPN的介绍见『计算机视觉』FPN特征金字塔网络. 网络构架部分代码见Mask_RCNN/mrcnn/model.py中class MaskRCNN的build方法的"inference"分支. 1.Keras调用GPU设置 [*]指定GPU import os os.environ["CUDA_VISIBLE_DEVICES"] = "2" [**]按需分配 import tensorflow as tf import ker…
url: https://arxiv.org/abs/1812.01187 year: 2018 文中介绍了训练网络的一些 tricks, 通过组合训练过程的trick,来提高模型性能和泛化能力,以及迁移学习的性能.总的来说,这篇文章是一篇实用性极强的文章,也是需要亲自调试才能明白其好处的文章. baseline baseline training: 随机采样一幅图像,解码为32位浮点数类型,像素值取值为[0,255] 随机裁剪图像,裁剪的参数是长宽比[3/4,4/3],随机采样面积[8%,10…
Mask_RCNN-2.0 网页链接:https://github.com/matterport/Mask_RCNN/releases/tag/v2.0 Mask_RCNN-master(matterport / Mask_RCNN)网页链接:https://github.com/matterport/Mask_RCNN 操作步骤 本文假设运行环境满足基本需求:Python = 3.6.8, tensorflow-gpu = 1.12.0, keras = 2.0.8, matplotlib =…
关于Keras的“层”(Layer) 所有的Keras层对象都有如下方法: layer.get_weights():返回层的权重(numpy array) layer.set_weights(weights):从numpy array中将权重加载到该层中,要求numpy array的形状与* layer.get_weights()的形状相同 layer.get_config():返回当前层配置信息的字典,层也可以借由配置信息重构: Input(shape=None,batch_shape=Non…