poj1637--Sightseeing tour(最大流)】的更多相关文章

混合图的欧拉回路定向问题. 顺便瞎说几句,有向图定欧拉回路的充要条件是每个点入度等于出度,并且图联通.无向图的话只要联通无奇点即可. 欧拉路径的确定应该是无向图联通且奇点数0个或2个,有向图忘了,好像复杂一点,这个真考到就暴力瞎搜吧. 既然每个点的度数都定了,又入度等于出度,那两者对半分,在二分图里左向右连上原图的边,左点集与s连容量为待补充的出度,右点集反之.这样如果我真可以定下来的话,就会有左边所有连边都满流.所以跑最大流看能不能到满流(就是差的总出度)即可. #include<iostre…
Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8859   Accepted: 3728 Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beauti…
                                                            Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9100   Accepted: 3830 Description The city executive board in Lund wants to construct a sightseeing tour by bus…
嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=1637 Time Limit: 1000MS Memory Limit: 10000K Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that t…
Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10581   Accepted: 4466 题目链接:http://poj.org/problem?id=1637 Description: The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that touri…
有向连通图存在欧拉回路的充要条件是所有点入度=出度. 首先随便给定所有无向边一个方向(不妨直接是u->v方向),记录所有点的度(记:度=入度-出度). 这时如果有点的度不等于0,那么就不存在欧拉回路,就需要改变那些无向边的方向. 而改变一个无向边的方向,相当于边上两个端点的入度和出度都变化了1,它们的度±2. 另外,这样可以证明如果这时某个点的度为奇数那么一定不存在存在欧拉回路的解. 构图如下:所有无向边(u,v),建立容量为1的(u,v)边:所有度小于0的点u,建立容量为-deg/2的(vs,…
传送门 第一次做这种题, 尽管ac了但是完全不知道为什么这么做. 题目就是给一些边, 有向边与无向边混合, 问你是否存在欧拉回路. 做法是先对每个点求入度和出度, 如果一条边是无向边, 就随便指定一个方向, 然后连一条边, 权值为1. 最后统计入度出度, 如果一个点的(入度-出度)%2==1, 就说明不存在欧拉回路. 如果全都满足, 就判断每个点的入度出度的大小关系, 入度>出度, 就向汇点连一条边, 权值为(入度-出度)/2, 相反的话就向源点连边. 跑一遍最大流, 看是否满流, 如果满流就说…
题目链接 题意 给出一个混合图(有无向边,也有有向边),问能否通过确定无向边的方向,使得该图形成欧拉回路. 思路 这是一道混合图欧拉回路的模板题. 一张图要满足有欧拉回路,必须满足每个点的度数为偶数. 对于这道题,我们先随便给无向边定个向.这时能够形成欧拉回路的必须条件就是每个点的入度和出度之差为偶数. 在满足了这个条件之后,我们通过网络流来判断是否可以形成欧拉回路. 下面用\(rd\)表示入度,\(cd\)表示出度. 首先对于入度小于出度的点,我们从\(S\)向这个点连一条权值为\((cd -…
题目:http://poj.org/problem?id=1637 先给无向边随便定向,如果一个点的入度大于出度,就从源点向它连 ( 入度 - 出度 / 2 ) 容量的边,意为需要流出去这么多:流出去1表示改了一条边的方向,会使自己出度-1.入度+1,所以容量要/2:出度大于入度的点类似地连向汇点:无向边按给它定的方向的反方向连上容量为1的边:最后看看能否满流即可. #include<cstdio> #include<cstring> #include<algorithm&g…
题目:http://poj.org/problem?id=1637 建图很妙: 先给无向边随便定向,这样会有一些点的入度不等于出度: 如果入度和出度的差值不是偶数,也就是说这个点的总度数是奇数,那么一定无解: 随便定向后,如果定向 x -> y,那么从 y 向 x 连一条容量为1的边,将来选了这条边,表示重新定向成 y -> x 了: 考虑如果选了这条边,那么 x 的出度-1,入度+1,变化量是2: 所以对于每个点,如果入度>出度,从源点向它连容量为 (入度-出度)/2 的边,因为刚才改…