首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
机器学习算法-K-means聚类
】的更多相关文章
100天搞定机器学习|day44 k均值聚类数学推导与python实现
[如何正确使用「K均值聚类」? 1.k均值聚类模型 给定样本,每个样本都是m为特征向量,模型目标是将n个样本分到k个不停的类或簇中,每个样本到其所属类的中心的距离最小,每个样本只能属于一个类.用C表示划分,他是一个多对一的函数,k均值聚类就是一个从样本到类的函数. 2.k均值聚类策略 k均值聚类的策略是通过损失函数最小化选取最优的划分或函数. 首先,计算样本之间的距离,这里选欧氏距离平方. 然后定义样本与其所属类的中心之间的距离的总和为损失函数 其中为第l个类的均值或中心 ,是指示函数,取值1或…
机器学习实战---K均值聚类算法
一:一般K均值聚类算法实现 (一)导入数据 import numpy as np import matplotlib.pyplot as plt def loadDataSet(filename): dataSet = np.loadtxt(filename) return dataSet (二)计算两个向量之间的距离 def distEclud(vecA,vecB): #计算两个向量之间距离 return np.sqrt(np.sum(np.power(vecA-vecB,))) (三)随机初…
ML: 聚类算法-K均值聚类
基于划分方法聚类算法R包: K-均值聚类(K-means) stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids) cluster::pam() .fpc::pamk() 层次聚类 stats::hclust().BIRCH.CURE 密度聚类 fpc::DBS…
机器学习之K均值聚类
聚类的核心概念是相似度或距离,有很多相似度或距离的方法,比如欧式距离.马氏距离.相关系数.余弦定理.层次聚类和K均值聚类等 1. K均值聚类思想 K均值聚类的基本思想是,通过迭代的方法寻找K个簇的一种划分方案,使得聚类结果对应的代价函数最小,特别地,代价函数可以定义为各个样本距离所属簇中心点的误差平方和\[J(c,\sigma) = \sum_{i=1}^M{||x_i - \sigma_{c_i}||}^2\] 其中\(x_i\)代表第i个样本点,\(c_i\)是\(x_i\)所属于的…
机器学习算法总结(五)——聚类算法(K-means,密度聚类,层次聚类)
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善模型.而在聚类算法中是怎么来度量模型的好坏呢?聚类算法模型的性能度量大致有两类: 1)将模型结果与某个参考模型(或者称为外部指标)进行对比,私认为这种方法用的比较少,因为需要人为的去设定外部参考模型. 2)另一种是直接使用模型的内部属性,比如样本之间的距离(闵可夫斯基距离)来作为评判指标,这类称为内…
聚类和EM算法——K均值聚类
python大战机器学习——聚类和EM算法 注:本文中涉及到的公式一律省略(公式不好敲出来),若想了解公式的具体实现,请参考原著. 1.基本概念 (1)聚类的思想: 将数据集划分为若干个不想交的子集(称为一个簇cluster),每个簇潜在地对应于某一个概念.但是每个簇所具有现实意义由使用者自己决定,聚类算法仅仅会进行划分. (2)聚类的作用: 1)可以作为一个单独的过程,用于寻找数据的一个分布规律 2)作为分类的预处理过程.首先对分类数据进行聚类处理,然后在聚类结果的每一个簇上执行分类过程.…
sklearn机器学习算法--K近邻
K近邻 构建模型只需要保存训练数据集即可.想要对新数据点做出预测,算法会在训练数据集中找到最近的数据点,也就是它的“最近邻”. 1.K近邻分类 #第三步导入K近邻模型并实例化KN对象 from sklearn.neighbors import KNeighborsClassifier #其中n_neighbors为近邻数量 clf = KNeighborsClassifier(n_neighbors=3) #第四步对训练集进行训练 clf.fit(X_train,y_train) #查看训练集和…
每日一个机器学习算法——k近邻分类
K近邻很简单. 简而言之,对于未知类的样本,按照某种计算距离找出它在训练集中的k个最近邻,如果k个近邻中多数样本属于哪个类别,就将它判决为那一个类别. 由于采用k投票机制,所以能够减小噪声的影响. 由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合. 一个不足之处是计算量较大,因为对每一个待分类的样本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点.…
Python实现的各种机器学习算法
七种算法包括: 线性回归算法 Logistic 回归算法 感知器 K 最近邻算法 K 均值聚类算法 含单隐层的神经网络 多项式的 Logistic 回归算法 01 线性回归算法 在线性回归中,我们想要建立一个模型,来拟合一个因变量 y 与一个或多个独立自变量(预测变量) x 之间的关系. 给定: 数据集 是d-维向量 是一个目标变量,它是一个标量 线性回归模型可以理解为一个非常简单的神经网络: 它有一个实值加权向量 它有一个实值偏置量 b 它使用恒等函数作为其激活函数 线性回归模型可以使用以下方…
小姐姐带你一起学:如何用Python实现7种机器学习算法(附代码)
小姐姐带你一起学:如何用Python实现7种机器学习算法(附代码) Python 被称为是最接近 AI 的语言.最近一位名叫Anna-Lena Popkes的小姐姐在GitHub上分享了自己如何使用Python(3.6及以上版本)实现7种机器学习算法的笔记,并附有完整代码.所有这些算法的实现都没有使用其他机器学习库.这份笔记可以帮大家对算法以及其底层结构有个基本的了解,但并不是提供最有效的实现. 小姐姐她是德国波恩大学计算机科学专业的研究生,主要关注机器学习和神经网络. 七种算法包括: 线性回归…