信息熵与信息增益(IE, Information Entropy; IG, Information Gain) 信息增益是机器学习中特征选择的关键指标,而学习信息增益前,需要先了解信息熵和条件熵这两个重要概念. 信息熵(信息量) 信息熵的意思就是一个变量i(就是这里的类别)可能的变化越多(只和值的种类多少以及发生概率有关,反而跟变量具体的取值没有任何关系),它携带的信息量就越大(因为是相加累计),这里就是类别变量i的信息熵越大. 系统越是有序,信息熵就越低:反之,一个系统越乱,信息熵就越高.所以…
当我们需要对一个随机事件的概率分布进行预测时,我们的预测应当满足全部已知的条件,而对未知的情况不要做任何主观假设.在这种情况下,概率分布最均匀,预测的风险最小.因为这时概率分布的信息熵最大,所以称之为“最大熵法”.最大熵法在数学形式上很漂亮,但是实现起来比较复杂,但把它运用于金融领域的诱惑也比较大,比如说决定股票涨落的因素可能有几十甚至上百种,而最大熵方法恰恰能找到一个同时满足成千上万种不同条件的模型. 这里我们先不讨论算法(这里用的是ID3/C4.5),把一棵决策树建立起来再说.我们要建立的决…
Knowledge Discovery in Databases (KDD) is an active and important research area with the promise for a high payoff in many business and scientific applications. One of the main tasks in KDD is classification. A particular efficient method for classif…
决策树构建中节点的选择靠的就是信息增益了. 信息增益是一种有效的特征选择方法,理解起来很简单:增益嘛,肯定是有无这个特征对分类问题的影响的大小,这个特征存在的话,会对分类系统带来多少信息量,缺了他行不行? 既然是个增益,就是个差了,减法计算一下,谁减去谁呢? 这里就用到了信息熵的概念,放到分类系统里面,信息熵如何计算呢? 分类系统里面无非是样本xi以及样本的分类结果yi,假设这个分类系统有k类,那么作为训练集来说,分类情况基本就定了,是按照样本的各个特征定的.那么在这些样本的信息的前提下,分类器…
用Python编写WordCount程序任务 程序 WordCount 输入 一个包含大量单词的文本文件 输出 文件中每个单词及其出现次数(频数),并按照单词字母顺序排序,每个单词和其频数占一行,单词和频数之间有间隔 1.编写map函数,reduce函数 (1)首先创建一个文件夹 mkdir wc (2)编写两个mapper函数 2.将其权限作出相应修改 3.本机上测试运行代码 4.放到HDFS上运行,下载并上传文件到hdfs上 5.用Hadoop Streaming命令提交任务…
转至:http://blog.csdn.net/bitcarmanlee/article/details/51488204 在信息论与概率统计学中,熵(entropy)是一个很重要的概念.在机器学习与特征工程中,熵的概念也用得灰常多.今天就把跟熵有关的东东稍微整理一下,权当笔记. 1.信息熵 熵是神马东东?信息论的开山祖师爷Shannon(中文翻译过来一般叫香农,总觉得很多文字经过翻译就不对劲,就跟人家老外翻译贱人就是矫情一样,感觉怪怪的.所以咱们还是用英文了,偷偷装个小逼)明确告诉我们,信息的…
本文简单介绍了熵.信息增益的概念,以及如何使用信息增益对监督学习的训练样本进行评估,评估每个字段的信息量. 1.熵的介绍       在信息论里面,熵是对不确定性的测量.通俗来讲,熵就是衡量随机变量随机性的指标.比如一个随机变量X的状态有{1,2,...,n},如果X取1的概率为1,其他状态为0,那么这个随机变量一点儿随机性都没有,也就是信息量为0:反之,如果每个状态的概率都相当,也就是说这个随机变量不倾向任何一个状态,因此随机性最高.(在离散情况,均匀分布的熵最高:在连续情况,正态分布的熵最高…
熵 给定一个离散变量,我们观察它的每一个取值所包含的信息量的大小,因此,我们用来表示信息量的大小,概率分布为.当p(x)=1时,说明这个事件一定会发生,因此,它带给我的信息为0.(因为一定会发生,毫无悬念) 如果x和y独立无关,那么: 他们之间的关系为: (p(x)=1时,h(x)=0,负号为了确保h(x)为正,这里取2为底是随机的,可以取其他的正数(除了1)) 因此,对于所有x的取值,它的熵有: 注:,当遇到时, 这里插一段信息熵的解释: ———————————————————————————…
github:代码实现 本文算法均使用python3实现 1. 决策树   决策树(decision tree)是一种基本的分类与回归方法(本文主要是描述分类方法),是基于树结构进行决策的,可以将其认为是if-then规则的集合.一般的,一棵决策树包含一个根节点.若干内部节点和若干叶节点.其中根节点包含所有样本点,内部节点作为划分节点(属性测试),叶节点对应于决策结果.   用决策树进行分类,是从根节点开始,对实例的某一特征进行测试,根据测试结果,将实例分配到其子节点,若该子节点仍为划分节点,则…
KL DivergenceKL( Kullback–Leibler) Divergence中文译作KL散度,从信息论角度来讲,这个指标就是信息增益(Information Gain)或相对熵(Relative Entropy),用于衡量一个分布相对于另一个分布的差异性,注意,这个指标不能用作距离衡量,因为该指标不具有对称性,即两个分布PP和QQ,DKL(P|Q)DKL(P|Q)与DKL(Q|P)DKL(Q|P)计算的值一般不相等,若用作距离度量,一般需要对公式加以修改,后文讲到. KL Dive…
目录 熵和信息增益 一.熵(Entropy) 二.条件熵(Conditional Entropy) 三.联合熵(Joint Entropy) 四.相对熵(Relative Entropy) 4.1 相对熵的性质 五.交叉熵(Cross Entropy) 六.相对熵.交叉熵和熵的关系 七.信息增益(Information Gain) 八.信息增益比(Information Gain Ratio) 九.一张图带你看懂熵和信息增益 更新.更全的<机器学习>的更新网站,更有python.go.数据结构…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布,学习思想包括ID3,C4.5,CART(摘自<统计学习方法>). 1.2 Bagging :基于数据随机重抽样的集成方法(Ensemble methods),也称为自举汇聚法(boostrap aggregating),整个数据集是…
决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分,将其归到不同的类别.决策树的主要优点是模型可读.易于理解.分类速度快.建模与预测速度快.本文主要介绍 Quinlan 在 1986 年提出的 ID3 算法与 1993 年提出的 C4.5 算法.下面首先对决策树模型进行简单介绍. 决策树模型 决策树是由树节点与边组成的,其节点有两种类型,内部节点和叶…
Decision Tree:Analysis 大家有没有玩过猜猜看(Twenty Questions)的游戏?我在心里想一件物体,你可以用一些问题来确定我心里想的这个物体:如是不是植物?是否会飞?能游泳不?当你问完这些问题后,你就能得到这个物体的特征,然后猜出我心里想象的那个物体,看是否正确. 这个游戏很简单,但是蕴含的思想却是质朴的.每个问题都会将范围减少,直到特征显现,内蕴的思想就是Decision Tree算法.判定树(Decision Tree)算法是机器学习中很重要的一种算法,有文章声…
  一.数据挖掘 数据挖掘是运用计算机及信息技术,从大量的.不全然的数据集中获取隐含在当中的实用知识的高级过程.Web 数据挖掘是从数据挖掘发展而来,是数据挖掘技术在Web 技术中的应用.Web 数据挖掘是一项综合技术,通过从Internet 上的资源中抽取信息来提高Web 技术的利用效率,也就是从Web 文档结构和试用的集合中发现隐含的模式. 数据挖掘涉及的学科领域和方法非常多,有多种分类法. (1)依据挖掘对象分:关系数据库.面向对象数据库.空间数据库.时序数据库.DNA 数据库.多媒体数据…
  一.数据挖掘 数据挖掘是运用计算机及信息技术,从大量的.不全然的数据集中获取隐含在当中的实用知识的高级过程.Web 数据挖掘是从数据挖掘发展而来,是数据挖掘技术在Web 技术中的应用.Web 数据挖掘是一项综合技术,通过从Internet 上的资源中抽取信息来提高Web 技术的利用效率,也就是从Web 文档结构和试用的集合中发现隐含的模式. 数据挖掘涉及的学科领域和方法非常多.有多种分类法. (1)依据挖掘对象分:关系数据库.面向对象数据库.空间数据库.时序数据库.DNA 数据库.多媒体数据…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布,学习思想包括ID3,C4.5,CART(摘自<统计学习方法>). 1.2 Bagging :基于数据随机重抽样的集成方法(Ensemble methods),也称为自举汇聚法(boostrap aggregating),整个数据集是…
转载于:http://www.cnblogs.com/pinard/p/6050306.html (楼主总结的很好,就拿来主义了,不顾以后还是多像楼主学习) 决策树算法在机器学习中算是很经典的一个算法系列了.它既可以作为分类算法,也可以作为回归算法,同时也特别适合集成学习比如随机森林.本文就对决策树算法原理做一个总结,上篇对ID3, C4.5的算法思想做了总结,下篇重点对CART算法做一个详细的介绍.决策树根据一步步地属性分类可以将整个特征空间进行划分,从而区别出不同的分类样本 1. 决策树ID…
谈完数据结构中的树(详情见参照之前博文<数据结构中各种树>),我们来谈一谈机器学习算法中的各种树形算法,包括ID3.C4.5.CART以及基于集成思想的树模型Random Forest和GBDT.本文对各类树形算法的基本思想进行了简单的介绍,重点谈一谈被称为是算法中的“战斗机”,机器学习中的“屠龙刀”的GBDT算法. 1. 决策树的模型 决策树是一种基本的分类与回归方法,它可以被认为是一种if-then规则的集合.决策树由节点和有向边组成,内部节点代表了特征属性,外部节点(叶子节点)代表了类别…
机器学习算法的空间.时间复杂度依赖于输入数据的规模,维度规约(Dimensionality reduction)则是一种被用于降低输入数据维数的方法.维度规约可以分为两类: 特征选择(feature selection),从原始的d维空间中,选择为我们提供信息最多的k个维(这k个维属于原始空间的子集) 特征提取(feature extraction),将原始的d维空间映射到k维空间中(新的k维空间不输入原始空间的子集) 在文本挖掘与文本分类的有关问题中,常采用特征选择方法.原因是文本的特征一般都…
从决策树学习谈到贝叶斯分类算法.EM.HMM     引言 最近在面试中,除了基础 &  算法 & 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全不代表你将来的面试中会遇到此类问题,只是因为我的简历上写了句:熟悉常见的聚类 & 分类算法而已),而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关数据挖掘十大算法的系列文章以作为自己备试之用,甚至以备将来常常回顾思考.行文杂乱,但侥幸若能对读者起到一点帮助,则幸甚至哉. 本文借鉴和参考了两本书,…
一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain).  KL散度是两个概率分布P和Q差别的非对称性的度量. KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的比特个数. 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布. 根据shannon的信息论,给定…
从决策树学习谈到贝叶斯分类算法.EM.HMM                (Machine Learning & Recommend Search交流新群:172114338) 引言 log0为0). 如果写代码实现熵的计算,则例如以下所看到的: //依据详细属性和值来计算熵 double ComputeEntropy(vector <vector <string> > remain_state, string attribute, string value,bool i…
分类是数据挖掘中十分重要的组成部分.分类作为一种无监督学习方式被广泛的使用. 之前关于"数据挖掘中十大经典算法"中,基于ID3核心思想的分类算法C4.5榜上有名.所以不难看出ID3在 数据分类中是多么的重要了. ID3又称为决策树算法,虽然现在广义的决策树算法不止ID3一种,但是由于ID3的重要性,习惯是还是把ID3 和决策树算法等价起来. 另外无监督学习方式我还要多说两句.无监督学习方式包括决策树算法,基于规则的分类,神经网络等.这些分 类方式是初始分类已知,将样本分为训练样本和测试…
定义: 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法. 目前我们会用到的主流的决策树算法包括:ID3,C4.5,CART等. ID3算法是以信息增益为准则选择信息增益最大的属性,信息增益对可取值数目较多的属性有所偏好,比如通过ID号可将每个样本分成一类,但是没有意义.同时ID3只能对离散属性的数据集构造决策树. c4.5算法是以信息增益率为准则选择…
声明:本篇博文是学习<机器学习实战>一书的方式路程,系原创,若转载请标明来源. 1 决策树的基础概念 决策树分为分类树和回归树两种,分类树对离散变量做决策树 ,回归树对连续变量做决策树.决策树算法主要围绕两大核心问题展开:第一, 决策树的生长问题 , 即利用训练样本集 , 完成决策树的建立过程 .第二, 决策树的剪枝问题,即利用检验样本集 , 对形成的决策树进行优化处理.这里主要介绍分类树的两个经典算法:ID3算法和C4.5算法,他们都是以信息熵作为分类依据,ID3 是用信息增益,而C4.5…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 关于相似性以及文档特征.词特征有太多种说法.弄得好乱,而且没有一个清晰逻辑与归类,包括一些经典书籍里面也分得概念模糊,所以擅自分一分. ---------------------------------------------- 一.单词的表示方式 1.词向量 词向量是现行较为多的方式,另外一篇博客已经写了四种词向量的表达方式,两两之间也有递进…
顾名思义,决策树model是树形结构,在分类中,表示基于特征对实例进行分类的过程.可以认为是"if-else"的合集,也可以认为是特征空间,类空间上条件概率分布.主要优点是分类速度快,可读性好.在学习时(training)根据loss function最小化原则建立决策树model,预测时对新数据利用决策树进行分类.常包括三个步骤*:特征选择,决策树生成,决策树剪枝.思想来源是1986年Quinlan提出的ID3算法,1993年C4.5算法,Breiman在1984年提出的CART算法…
决策树是一种常见的机器学习模型.形象地说,决策树对应着我们直观上做决策的过程:经由一系列判断,得到最终决策.由此,我们引出决策树模型. 一.决策树的基本流程 决策树的跟节点包含全部样例,叶节点则对应决策结果.其它每个节点则对应一个属性测试,每个节点包含的样本集合根据属性测试结果被划分到不同子节点中.决策树学习的目的是,产生一棵泛化能力强,i.e.处理未见示例能力强的决策树. 决策树的基本流程遵循分治策略.基本算法的伪码书中已经给出: 从中看出,决策树是一个递归过程,有三种情形会导致递归返回: 当…
http://www.cnblogs.com/ywl925/p/3554502.html http://www.cnblogs.com/hxsyl/p/4910218.html http://blog.csdn.net/acdreamers/article/details/44657745 KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy).它衡量的是相同事件空间里的两个概率分布的差异…