作者: peghoty 出处: http://blog.csdn.net/peghoty/article/details/9286905 社区发现(Community Detection)算法用来发现网络中的社区结构,也可以看做是一种聚类算法. 博客上看到一篇优秀的介绍社区发现的PPT,转载过来分享:   从上述定义可以看出:社区是一个比较含糊的概念,只给出了一个定性的刻画. 另外需要注意的是,社区是一个子图,包含顶点和边.   下面我们以新浪微博用户对应的网络图为例,来介绍相应的社区发现算法.…
作者: peghoty 出处: http://blog.csdn.net/peghoty/article/details/9286905 社区发现(Community Detection)算法用来发现网络中的社区结构,也可以看做是一种聚类算法. 以下是我的一个 PPT 报告,分享给大家. 从上述定义可以看出:社区是一个比较含糊的概念,只给出了一个定性的刻画. 另外需要注意的是,社区是一个子图,包含顶点和边. 下面我们以新浪微博用户对应的网络图为例,来介绍相应的社区发现算法. 这里在相互关注的用户…
作者: peghoty 出处: http://blog.csdn.net/peghoty/article/details/9286905 社区发现(Community Detection)算法用来发现网络中的社区结构,也可以看做是一种聚类算法. 以下是我的一个 PPT 报告,分享给大家. 从上述定义可以看出:社区是一个比较含糊的概念,只给出了一个定性的刻画. 另外需要注意的是,社区是一个子图,包含顶点和边. 下面我们以新浪微博用户对应的网络图为例,来介绍相应的社区发现算法. 这里在相互关注的用户…
首先什么是社区(Community structure)呢?其实并不是指一个网络相互连接的部分,而是一个网络中链接“紧密的部分”,至于怎么定义紧密就有很多方法了. 社区发现算法可以参考下面的博客:博客1,博客2 那么又该如何动手实现呢?? 由于小组主要使用python和R语言编程,所以首先想到networkX这个python包,但是我找了一下里面并没有相应的算法实现.其次是igraph,它提供了python和R语言的接口,然而通过调查,只在R的接口文档里找到了一些社区发现算法,比如几个fast_…
一.概念 复杂网络:现实生活中各种系统都可以看做成复杂网络,复杂网络构成包括节点和边,节点是网络中的基本组成单元,节点之间的联系或者关系是网络中的边.例如 电力网络:基站代表节点,基站之间是否互通表示边: 社交网络:用户代表节点,用户的关注关系表示边: 万维网络:网页代表节点,网页的链接关系代表边: 交通运输网络,神经网络,经济贸易网络,科学家合作网络等等 社区发现:社区发现在数据挖掘领域有重要的作用,在一个网络中,如果一个团体有共同的爱好或者特征,并紧密联系在一起,那么我们称网络中这个小集体为…
最近在研究基于标签传播的社区分类,LabelRank算法基于标签传播和马尔科夫随机游走思路上改装的算法,引用率较高,打算将代码实现,便于加深理解. 这个算法和Label Propagation 算法不同的是计算复杂度较高,对每个标签都确定了概率,但是准确性比Label Propagation算法好. 一.概念 相关概念不再累述,详情见前两篇文章 二.算法思路 首先建立一个标签集合,C={1,2,……n},n是节点的数量.标签概率向量Pi(1*n),Pi(c)=节点i对标签c的概率估计,迭代过程中…
1. 社团划分 0x1:社区是什么 在社交网络中,用户相当于每一个点,用户之间通过互相的关注关系构成了整个网络的结构. 在这样的网络中,有的用户之间的连接较为紧密,有的用户之间的连接关系较为稀疏.其中连接较为紧密的部分可以被看成一个社区,其内部的节点之间有较为紧密的连接,而在两个社区间则相对连接较为稀疏. 整个整体的结构被称为社团结构.如下图,红色的黑色的点集呈现出社区的结构, 用红色的点和黑色的点对其进行标注,整个网络被划分成了两个部分,其中,这两个部分的内部连接较为紧密,而这两个社区之间的连…
最近做了一些和gnn相关的工作,经常听到GCN 和 embedding 相关技术,感觉很是困惑,所以写下此博客,对相关知识进行索引和记录: 参考链接: https://www.toutiao.com/a6690680620642730510/ graph embedding 技术学习 如何理解 Graph Convolutional Network(GCN): https://www.zhihu.com/question/54504471/answer/332657604 卷积神经网络的卷积核:…
Louvain算法是基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标是最大化整个社区网络的模块度. 模块度(Modularity) 模块度是评估一个社区网络划分好坏的度量方法,它的物理含义是社区内节点的连边数与随机情况下的边数只差,它的取值范围是 [−1/2,1),其定义如下: $$Q = \frac{1}{2m}\sum_{i,j}[A_{ij} - \frac{k_ik_j}{2m}]\delta(c_i,c_j)$$ $$\delta(u,…
在做东西的时候用到了社区发现,因此了解了一下有关社区发现的一些问题 1,社区发现算法 (1)SCAN:一种基于密度的社团发现算法 Paper: <SCAN: A Structural Clustering Algorithm for Networks>  Auther: Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, Thomas A. J. Schweiger  Conference: SIGKDD 2007 主要概念: 节点相似度定义为两个节点共同邻居的数目与…