神经网络和BP算法推导】的更多相关文章

注意:绘画太难了,因为他们画,本文中的所有插图来自基本算法饺子机类.请勿转载 1.习模型: 事实上,基本上全部的基本机器学习模型都能够概括为下面的特征:依据某个函数,将输入计算并输出. 图形化表示为下图: 当我们的g(h)为sigmoid函数时候,它就是一个逻辑回归的分类器.当g(h)是一个仅仅能取0或1值的函数时,它就是一个感知机.那么问题来了,这一类模型有明显缺陷:当模型线性不可分的时候.或者所选取得特征不完备(或者不够准确)的时候.上述分类器效果并非特别喜人. 例如以下例: 我们能够非常轻…
最近一个月项目好忙,终于挤出时间把这篇 BP 算法基本思想写完了,公式的推导放到下一篇讲吧. 一.神经网络的代价函数 神经网络可以看做是复杂逻辑回归的组合,因此与其类似,我们训练神经网络也要定义代价函数,之后再使用梯度下降法来最小化代价函数,以此来训练最优的权重矩阵. 1.1 从逻辑回归出发 我们从经典的逻辑回归代价函数引出,先来复习下: \[J(\theta) = \frac{1}{m}\sum\limits_{i = 1}^{m}{[-{y^{(i)}}\log ({h_\theta}({x…
前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工神经网络结构与人工神经网络可以完美分割任意数据的原理: 本节图片来源于斯坦福Andrew Ng老师coursea课件(此大神不多介绍,大家都懂) 在说明神经网络之前,先介绍一下神经网络的基础计算单元,感知器. 上图就是一个简单的感知器,蓝色是输入的样本,g(z)是激活函数,z=x1*w1+-,a=g(z) 这…
1.前言 看完讲卷积神经网络基础讲得非常好的cs231后总感觉不过瘾,主要原因在于虽然知道了卷积神经网络的计算过程和基本结构,但还是无法透彻理解卷积神经网络的学习过程.于是找来了进阶的教材Notes on Convolutional Neural Networks,结果刚看到第2章教材对BP算法的回顾就犯难了,不同于之前我学习的对每一个权值分别进行更新的公式推导,通过向量化表示它只用了5个式子就完成了对连接权值更新公式的描述,因此我第一眼看过去对每个向量的内部结构根本不清楚.原因还估计是自己当初…
转载自:http://www.cnblogs.com/tornadomeet/archive/2013/03/20/2970724.html 前言: 现在来进入sparse autoencoder的一个实例练习,参考Ng的网页教程:Exercise:Sparse Autoencoder.这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoencoder的方法训练出一个隐含层网络所学习到的特征.该网络共有3…
最近这段时间系统性的学习了 BP 算法后写下了这篇学习笔记,因为能力有限,若有明显错误,还请指正. 什么是梯度下降和链式求导法则 假设我们有一个函数 J(w),如下图所示. 梯度下降示意图 现在,我们要求当 w 等于什么的时候,J(w) 能够取到最小值.从图中我们知道最小值在初始位置的左边,也就意味着如果想要使 J(w) 最小,w的值需要减小.而初始位置的切线的斜率a > 0(也即该位置对应的导数大于0),w = w – a 就能够让 w 的值减小,循环求导更新w直到 J(w) 取得最小值.如果…
def sigmoid(inX):   return 1.0/(1+exp(-inX))   '''标准bp算法每次更新都只针对单个样例,参数更新得很频繁sdataSet 训练数据集labels 训练数据集对应的标签标签采用one-hot编码(一位有效编码),例如类别0对应标签为[1,0],类别1对应标签为[0,1]alpha 学习率num 隐层数,默认为1层eachCount 每一层隐层的神经元数目repeat 最大迭代次数算法终止条件:达到最大迭代次数或者相邻一百次迭代的累计误差的差值不超过…
正向传播: W下脚标定义根据用户自己的习惯 反向传播算法 1.误差由本层传到上层相关联的结点,权重分配 2.上层某个结点的总误差 2.误差最小化与权重变量有关,最小梯度法. 权重因子更新 偏导数求解,链式求导法则: 误差由本层逐层向上层推进,归纳公式:…
第一种 %% %用神经网络解决异或问题 clear clc close ms=4;%设置4个样本 a=[0 0;0 1;1 0;1 1];%设置输入向量 y=[0,1,1,0];%设置输出向量 n=2;%输入量的个数 m=3;%隐层量的个数 k=1;%输出层的个数 w=rand(n,m);%为输入层到隐层的权值赋初值 v=rand(m,k);%为隐层到输出层的权值赋权值 yyuzhi=rand(1,m);%为输入层到隐层的阈值赋初值 scyuzhi=rand(1,1);%为隐层到输出层的阈值赋权…
参考:张玉宏<深度学习之美:AI时代的数据处理与最佳实践>265-271页…