1.写在前面 实验表明,RNN 在几乎所有的序列问题上都有良好表现,包括语音/文本识别.机器翻译.手写体识别.序列数据分析(预测)等. 在实际应用中,RNN 在内部设计上存在一个严重的问题:由于网络一次只能处理一个时间步长,后一步必须等前一步处理完才能进行运算.这意味着 RNN 不能像 CNN 那样进行大规模并行处理,特别是在 RNN/LSTM 对文本进行双向处理时.这也意味着 RNN 极度地计算密集,因为在整个任务运行完成之前,必须保存所有的中间结果. CNN 在处理图像时,将图像看作一个二维…