今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,AVL是发明平衡二叉树的两个科学家的名字的缩写,在此就不做深究了.其实平衡二叉树就是二叉排序树的一种,比二叉排序树多了一个平衡的条件.在一个平衡二叉树中,一个结点的左右子树的深度差不超过1. 本篇博客我们就依照平衡二叉树的特点,在创建二叉排序树的同时要保证结点的左右子树的深度差不超过1的规则.当我们往二叉排序树…
今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,AVL是发明平衡二叉树的两个科学家的名字的缩写,在此就不做深究了.其实平衡二叉树就是二叉排序树的一种,比二叉排序树多了一个平衡的条件.在一个平衡二叉树中,一个结点的左右子树的深度差不超过1. 本篇博客我们就依照平衡二叉树的特点,在创建二叉排序树的同时要保证结点的左右子树的深度差不超过1的规则.当我们往二叉排序树…
AVL 树 是最早时期发明的自平衡二叉搜索树之一.是依据它的两位发明者的名称命名. AVL 树有一个重要的属性,即平衡因子(Balance Factor),平衡因子 == 某个节点的左右子树高度差. AVL 树特点总结下来有: 每个节点的平衡因子有且仅有 1.0.-1,若超过这三个值的范围,就称其为失衡: 每个节点左右子树的高度差不会超过 1: 搜索.添加.删除的时间复杂度为 O(logn),n 为 n 个节点. 看上图,右侧图中二叉树就可以称为AVL 树. 添加后导致失衡 若再添加一个元素 1…
(百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.…
二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点,都满足其左子树上所有结点的数据域均小于或等于根结点的数据域,右子树上所有结点的数据域均大于根结点的数据域.如下图所示: 二叉查找树通常包含查找.插入.建树和删除操作. 二叉查找树的创建 对于一棵二叉查找树,其创建与二叉树的创建很类似,略有不同的是,二叉查找树,为了保证整棵树都关于根结点的大小呈左小右…
平衡二叉树(AVL 树) 1 看一个案例(说明二叉排序树可能的问题) 给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在.  左边 BST 存在的问题分析: 1) 左子树全部为空,从形式上看,更像一个单链表. 2) 插入速度没有影响 3) 查询速度明显降低(因为需要依次比较), 不能发挥 BST 的优势,因为每次还需要比较左子树,其查询速度比 单链表还慢 4) 解决方案-平衡二叉树(AVL)   2 基本介绍 1) 平衡二叉树也叫平衡二叉搜索树(Self…
我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度O(log2n)同时也由此而决定.但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n).我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉.这…
一.树的定义 树是一种非线性的数据结构,是由n(n >=0)个结点组成的有限集合.如果n==0,树为空树.如果n>0,树有一个特定的结点,根结点根结点只有直接后继,没有直接前驱.除根结点以外的其他结点划分为m(m>=0)个互不相交的有限集合,T0,T1,T2,...,Tm-1,每个结合是一棵树,称为根结点的子树. 树(tree):是以边(edge)相连的结点(node)的集合,每个结点存储对应的值(value/data),当存在子结点时与之相连. 根节点(root):是树的首个结点,在相…
学习过了二叉查找树,想必大家有遇到一个问题.例如,将一个数组{1,2,3,4}依次插入树的时候,形成了图1的情况.有建立树与没建立树对于数据的增删查改已经没有了任何帮助,反而增添了维护的成本.而只有建立的树如图2,才能够最大地体现二叉树的优点.            在上述的例子中,图2就是一棵平衡二叉树.科学家们提出平衡二叉树,就是为了让树的查找性能得到最大的体现(至少我是这样理解的,欢迎批评改正).下面进入今天的正题,平衡二叉树. AVL的定义 平衡二叉查找树:简称平衡二叉树.由前苏联的数学…
AVL树的定义 一种自平衡二叉查找树,中面向内存的数据结构. 二叉搜索树T为AVL树的满足条件为: T是空树 T若不是空树,则TL.TR都是AVL树,且|HL-HR| <= 1 (节点的左子树高度与节点的右子树高度差的绝对值小于等于1) 说明 AVL树的实现类为AVLTree继承自前篇中的二叉搜索树BTreeSort ,AVL树的节点类为AVLNode继承自二叉树节点类BTreeNode. 实现代码 AVL树节点定义 1  ); 203          System.out.print("…