[Wc2010]重建计划 Time Limit: 40 Sec  Memory Limit: 162 MBSubmit: 4345  Solved: 1054[Submit][Status][Discuss] Description Input 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai,Bi,Vi分别表示道路(Ai,Bi),其价值为Vi 其中城市由1..N…
题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深度在\([L-d,R-d]\)内的最大值更新.这可以用单调队列维护. 这需要子树中的点按dep排好序.可以用BFS,省掉sort. 直接这样的话,每次用之前的子树更新当前子树时,每次复杂度是\(O(\max\{dep\})\)的(之前子树中最大的深度).能被卡成\(O(n^2\log n)\). 可…
传送门 看到平均数最大,自然地想到二分答案.那么我们的$check$函数就是要求:是否存在一条长度在$[L,U]$的路径,满足其权值和$\geq 0$. 看到长度在$[L,U]$,自然地想到点分治求解.我们考虑如何统计答案,像树的难题那样使用线段树的话,复杂度会变成$nlog^3n$,显然是跑不过这道题的. 我们考虑:将一棵子树内的路径按照长度排序,那么从前往后依次询问子树内每一条路径的贡献的时候,在已经搜过的子树中可以匹配的长度区间是一个单调的区间.那么我们就可以使用单调队列将合并过程优化为$…
题目大意:给定一棵树,求一条长度在L到R的一条路径,使得边权的平均值最大. 题解 树上路径最优化问题,不难想到点分治. 如果没有长度限制,我们可以套上01分数规划的模型,让所有边权减去mid,求一条路径长度非负. 现在考虑有L和R的限制,就是我们在拼接两条路径的时候,每条路径能够匹配的是按深度排序后一段连续区间,我们只需要维护区间最大值. 然后随着深度的单调变化,这个区间在滑动,这就变成了滑动窗口问题. 代码 #include<iostream> #include<cstdio>…
一开始看到$\frac{\sum_{}}{\sum_{}}$就想到了01分数规划但最终还是看了题解 二分完后的点分治,只需要维护一个由之前处理过的子树得出的$tb数组$,然后根据遍历每个当前的子树上的结点的深度来确定$tb数组$中的滑块. 因为分数规划要找的是$max$,BFS遍历当前结点的深度越来越大,这样滑块也是单调向右滑动,所以滑块里的最大值就应当用单调队列解决 #include<cstdio> #include<algorithm> #define read(x) x=ge…
题解: 这题我居然做了一星期?... 平均值的极值其实也可以算是一种分数规划,只不过分母上b[i]=1 然后我们就可以二分这个值.类似与 HNOI最小圈 如果没有 链的长度的限制的话,我们直接两遍dfs就可以求出以每个点为起点的最长链,然后看看有没有权值和>0的即可. 但现在链有长度限制... 所以膜拜题解... 发现我们可以点分治,然后每个节点的合法对象都是一段连续的区间, 当用某个值来更新答案的时候是一个连续的区间. 所以可以单调队列来维护定长的区间最大值问题. 实现的时候好多细节...还好…
题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai,Bi,Vi分别表示道路(Ai,Bi),其价值为Vi 其中城市由1..N进行标号 输出 输出最大平均估值,保留三位小数 样例输入 4 2 3 1 2 1 1 3 2 1 4 3 样例输出 2.500 提示 N<=100000,1<=L<=U<=N-1,Vi<=1000000 这题算…
点分治,对于每个分治中心,考虑求出经过它的符合长度条件的链的最大权值和. 从分治中心dfs下去取出所有链,为了防止两条链属于同一个子树,我们一个子树一个子树地处理. 用s1[i]记录目前分治中心伸下去的链中长度为i的链的最大权值,s2[i]记录新子树中的链的最大权值. 分数规划,考虑合并,枚举长度,由于另一个长度在一个滑动窗口中,所以使用单调队列求解即可. 为了保证复杂度,讲子树按高度排序.注意初始化等问题. #include<cstdio> #include<vector> #i…
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1758 01分数规划,所以我们对每个重心进行二分.于是问题转化为Σw[e]-mid>=0, 对于一棵子树维护点的dep,dis,并用队列q存下来.令mx[i]表示当前dep为i的最大权值,维护一个单调队列dq,维护当前符合条件的mx,当我们从q的队尾向前扫时,它的dep是递减的,利用这个性质维护单调队列,最后更新一遍mx.具体看代码吧TAT 代码: #include<cstring>#…
两题都是树分治. 1758这题可以二分答案avgvalue,因为avgvalue=Σv(e)/s,因此二分后只需要判断Σv(e)-s*avgvalue是否大于等于0,若大于等于0则调整二分下界,否则调整二分上界.假设一棵树树根为x,要求就是经过树根x的最大答案,不经过树根x的可以递归求解.假设B[i]为当前做到的一颗x的子树中的点到x的距离为i的最大权值,A[i]为之前已经做过的所有子数中的点到x的距离为i的最大权值(这里的权值是Σv(e)-i*avgvalue),那么对于当前子树的一个距离i,…