我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可以完成很多分类任务,但是它最大的缺点就是无法给出数据的内 在含义,决策树的主要优势就在于数据形式非常容易理解. 决策树很多任务都 是为了数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列 规则,机器学习算法最终将使用这些机器从数据集中创造的规则.专家系统中经常使用决策树,…
前言 在机器学习经典算法中,决策树算法的重要性想必大家都是知道的.不管是ID3算法还是比如C4.5算法等等,都面临一个问题,就是通过直接生成的完全决策树对于训练样本来说是“过度拟合”的,说白了是太精确了.由于完全决策树对训练样本的特征描述得“过于精确” ,无法实现对新样本的合理分析, 所以此时它不是一棵分析新数据的最佳决策树.解决这个问题的方法就是对决策树进行剪枝,剪去影响预测精度的分支.常见的剪枝策略有预剪枝(pre -pruning)技术和后剪枝(post -pruning )技术两种.预剪…
ID3决策树算法是基于信息增益来构建的,信息增益可以由训练集的信息熵算得,这里举一个简单的例子 data=[心情好 天气好  出门 心情好 天气不好 出门 心情不好 天气好 出门 心情不好 天气不好 不出门] 前面两列是分类属性,最后一列是分类 分类的信息熵可以计算得到:出门=3,不出门=1,总行数=4分类信息熵 = -(3/4)*log2(3/4)-(1/4)*log2(1/4) 第一列属性有两类,心情好,心情不好 心情好 ,出门=2,不出门=0,行数=2 心情好信息熵=-(2/2)*log2…
''' 数据集:Mnist 训练集数量:60000 测试集数量:10000 ------------------------------ 运行结果:ID3(未剪枝) 正确率:85.9% 运行时长:356s ''' import time import numpy as np def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' # 存放数据及标记 dataArr = []; labelArr…
Python程序 ''' 数据集:Mnist 训练集数量:60000(实际使用:10000) 测试集数量:10000(实际使用:1000) 层数:40 ------------------------------ 运行结果: 正确率:97% 运行时长:65m ''' import time import numpy as np def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' # 存放数据…
''' 数据集:Mnist 训练集数量:60000 测试集数量:10000(实际使用:200) ''' import numpy as np import time def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' print('start read file') # 存放数据及标记 dataArr = [] labelArr = [] # 读取文件 fr = open(fileName)…
''' 数据集:Mnist 训练集数量:60000 测试集数量:10000 ------------------------------ 运行结果: 正确率:81.72%(二分类) ''' import numpy as np import time def loadData(fileName): ''' 加载Mnist数据集 :param fileName:要加载的数据集路径 :return: list形式的数据集及标记 ''' print('start to read data') # 存放…
''' 数据集:伪造数据集(两个高斯分布混合) 数据集长度:1000 ------------------------------ 运行结果: ---------------------------- the Parameters set is: alpha0:0.3, mu0:0.7, sigmod0:-2.0, alpha1:0.5, mu1:0.5, sigmod1:1.0 ---------------------------- the Parameters predict is: al…
''' 数据集:Mnist 训练集数量:60000 测试集数量:10000 ''' import numpy as np import time def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' # 存放数据及标记 dataArr = []; labelArr = [] # 读取文件 fr = open(fileName) # 遍历文件中的每一行 for line in fr.readli…
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.samples_generator import make_classification def initialize_params(dims): w = np.zeros((dims, 1)) b = 0 return w, b def sigmoid(x): z = 1 / (1 + np.exp(-x)) return z def logisti…