使用python实现深度神经网络 3 快速计算梯度的魔法--反向传播算法 快速计算梯度的魔法--反向传播算法 一.实验介绍 1.1 实验内容 第一次实验最后我们说了,我们已经学习了深度学习中的模型model(神经网络).衡量模型性能的损失函数和使损失函数减小的学习算法learn(梯度下降算法),还了解了训练数据data的一些概念.但是还没有解决梯度下降算法中如何求损失函数梯度的问题. 本次实验课,我们就来学习一个能够快速计算梯度的算法--反向传播算法(backpropogate algorith…
使用python实现深度神经网络 1(转) https://blog.csdn.net/oxuzhenyi/article/details/73026790…
https://blog.csdn.net/oxuzhenyi/article/details/73026807 使用浅层神经网络识别图片中的英文字母 一.实验介绍 1.1 实验内容 本次实验我们正式开始我们的项目:使用神经网络识别图片中的英文字母. 激动人心的时刻到了,我们将运用神经网络的魔力,解决一个无法使用手工编程解决的问题.如果你(自认为)是一个程序员,本次实验结束后,你将变得与其他只会手工编写程序的程序员不同. 1.2 实验知识点 “浅层”与“深度”的区别 泛化性能 随机梯度下降算法…
https://blog.csdn.net/oxuzhenyi/article/details/73026796 导数与梯度.矩阵运算性质.科学计算库numpy 一.实验介绍 1.1 实验内容 虽然在实验一中我想尽量少的引入(会让人放弃继续学习的)数学概念,但我似乎还是失败了.不过这几乎是没有办法的事,要想真正学会深度学习,没有一定的数学基础(高等数学.线性代数.概率论.信息论等),(几乎)是不可能的.学深度学习不学其中的原理你可能能够学会搭建模型,但当模型出了问题或者无法训练出好的结果时,不懂…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(一).MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(二)中,采用全连接神经网络(784-300-10),分别用非深度学习框架和基于pytorch实现,训练结果相当. 这里采用卷积神经网络(CNN)中著名的LeNet-5网…
从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Inceptionism.在这篇文章中,我们将讨论几个不同的深度学习框架,库以及工具. 深度学习是机器学习和人工智能的一种形式,利用堆积在彼此顶部的神经网络的多个隐藏层来尝试形成对数据更深层次的“理解”. 最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的…
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?以及他们的主要用途是什么?只知道CNN是局部感受和参数共享,比较适合用于图像这方面.刚入门的小白真心   个人觉得CNN.RNN和DNN不能放在一起比较.DNN是一个大类,CNN是一个典型的空间上深度的神经网络,RNN是在…
TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue区讨论官方教程地址视频/字幕下载 全连接神经网络 辅助阅读:TensorFlow中文社区教程 - 英文官方教程 代码见:full_connect.py Linear Model 加载lesson 1中的数据集 将Data降维成一维,将label映射为one-hot encoding def refo…
http://www.tuicool.com/articles/MfYjQfV 如何用70行Java代码实现深度神经网络算法 时间 2016-02-18 10:46:17  ITeye 原文  http://www.iteye.com/news/31357 主题 神经网络算法Java 对于现在流行的深度学习,保持学习精神是必要的——程序员尤其是架构师永远都要对核心技术和关键算法保持关注和敏感,必要时要动手写一写掌握下来,先不用关心什么时候用到——用不用是政治问题,会不会写是技术问题,就像军人不关…
如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识. 什么是深度神经网络? 神经网络包含三层:输入层(X).隐藏层和输出层:f(x) 每层之间每个节点都是完全连接的,其中包含权重(W).每层都存在一个偏移值(b). 每一层节点的计算方式如下: 其中g()代表激活函数,o()代表softmax输出函数. 使用Flow Graph的方式来表达如何正向推导神经网络,可以表达如下: x: 输入值 a(x):表示每个隐藏层的pre-acti…