grabcut mask】的更多相关文章

#include "opencv2/opencv.hpp" using namespace cv; void main() { Mat src = imread("E:\\智能检测与图像处理\\3.jpg"); //Rect rect(84, 84, 406, 318); Rect rect; Mat bgModel, fgModel; Mat result(src.size(), CV_8U, Scalar()); Mat ROI(result(Rect(, ,…
在上次用 CUDA实现导向滤波 后,想着导向滤波能以很小的mask还原高分辨率下的边缘,能不能搞点事情出来,当时正好在研究Darknet框架,然后又看到grabcut算法,用opencv试了下,感觉效果有点意思,后面想了下,这几个可以连在一起,先读取高分辨率的图像,然后用降低分辨率先通过yolov3算出人物框(非常稳定,不跳,几乎不会出现有人而找不到的情况),再用grabcut算出低mask,然后用这个mask结合原图用导向滤波得到高分辨率下清晰边缘的分割图,最后再把CUDA算出的结果直接丢给U…
http://www.cnblogs.com/mikewolf2002/p/3330390.html OpenCV学习(20) grabcut分割算法 在OpenCV中,实现了grabcut分割算法,该算法可以方便的分割出前景图像,操作简单,而且分割的效果很好.算法的原理参见papaer:“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts 比如下面的一副图,我们只要选定一个四边形框,把框中的图像作为gra…
 One cut in grabcut(grabcut算法的非迭代实现?) 本文针对交互式图像分割中的图割算法,主要想翻译一篇英文文献.不足之处请大家指正. 这是博主近期看到的效果最好,实现最简单,运算时间最短的交互式图割算法,而且由于是发明图割算法实验室原班人马的文章和代码,所以非常值得研究. 摘要 该方法使用少量的辅助节点(这个辅助节点我没看出来代码在哪块提现的,还望高手指点)来实现高效率的分割,传统的基于梯度下降的方法的分割方法,如grabcut,可能会收敛到局部极值(在图像较大时),…
图像分割之(四)OpenCV的GrabCut函数使用和源码解读         分类:            图像处理            计算机视觉             2013-01-23 17:19     12031人阅读     评论(33)    收藏    举报     图像分割之(四)OpenCV的GrabCut函数使用和源码解读 zouxy09@qq.com http://blog.csdn.net/zouxy09 上一文对GrabCut做了一个了解.OpenCV中的Gr…
所谓图像分割指的是根据灰度.颜色.纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性.我们先对目前主要的图像分割方法做个概述,后面再对个别方法做详细的了解和学习. 一.图像分割算法概述 1.基于阈值的分割方法 阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值相比较,最后将像素根据比较结果分到合适的类别中.因此,该类方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值. 2.基于边…
一.GrabCut 1.利用Rect做分割 #include "opencv2/opencv.hpp" using namespace cv; void main() { Mat src = imread("E://bird.jpg"); Rect rect(, , , );//左上坐标(X,Y)和长宽 Mat result, bg, fg; grabCut(src, result, rect, bg, fg, , GC_INIT_WITH_RECT); imsho…
1 使用普通摄像头进行深度估计 1.1 深度估计原理 这里会用到几何学中的极几何(Epipolar Geometry),它属于立体视觉(stereo vision)几何学,立体视觉是计算机视觉的一个分支,它从同一物体的两张不同图像提取三维信息. 极几何的工作原理: 它跟踪从摄像头到图像上每个物体的虚线,然后再第二张图像做同样的操作,并根据同一物体对应的线的交叉来计算距离. 在使用 OpenCV 如何使用极几何来计算所谓的视差图,它是如图像中检测到不同深度的基本表示,这样就能够提取出一张图片的前景…
#include "opencv2/opencv.hpp" using namespace cv; void main() { Mat src = imread("E:\\智能检测与图像处理\\3.jpg"); Rect rect(, , , );//左上坐标(X,Y)和长宽 Mat result, bg, fg; grabCut(src, result, rect, bg, fg, , GC_INIT_WITH_RECT); imshow("grab&q…
git:https://github.com/linyi0604/Computer-Vision import numpy as np import cv2 import matplotlib.pyplot as plt # 读入图片 img = cv2.imread("../data/mm2.jpeg") # 创建一个和加载图像一样形状的 填充为0的掩膜 mask = np.zeros(img.shape[:2], np.uint8) # 创建以0填充的前景和背景模型 bgdMode…