Tensorflow激活函数】的更多相关文章

激活函数的作用如下-引用<TensorFlow实践>: 这些函数与其他层的输出联合使用可以生成特征图.他们用于对某些运算的结果进行平滑或者微分.其目标是为神经网络引入非线性.曲线能够刻画出输入的复杂的变化.TensorFlow提供了多种激活函数,在CNN中一般使用tf.nn.relu的原因是因为,尽管relu会导致一些信息的损失,但是性能突出.在刚开始设计模型时,都可以采用relu的激活函数.高级用户也可以自己创建自己的激活函数,评价激活函数是否有用的主要因素参看如下几点: 1)该函数是单调的…
注意: 1.大多情况下使用Relu激活函数这种激活函数计算快,且在梯度下降中不会卡在plateaus(平稳段),对于大的输入,也不会饱和. 2.logistic function和hyperbloic tangent funcation会饱和在1.…
系统架构.自底向上,设备层.网络层.数据操作层.图计算层.API层.应用层.核心层,设备层.网络层.数据操作层.图计算层.最下层是网络通信层和设备管理层.网络通信层包括gRPC(google Remote Procedure Call Protocol)和远程直接数据存取(Remote Direct Memory Access,RDMA),分布式计算需要.设备管理层包手包括TensorFlow分别在CPU.GPU.FPGA等设备上的实现.对上层提供统一接口,上层只需处理卷积等逻辑,不需要关心硬件…
TensorFlow 激活函数 激活操作提供用于神经网络的不同类型的非线性.这些包括平滑的非线性(sigmoid,tanh,elu,softplus,和softsign),连续的,但不是到处可微函数(relu,relu6,crelu和relu_x),和随机正规化(dropout). 所有激活操作应用于分量,并产生与输入张量相同形状的张量. tf.nn.relu tf.nn.relu6 tf.nn.crelu tf.nn.elu tf.nn.softplus tf.nn.softsign tf.n…
1.Relu激活函数 Relu激活函数(The Rectified Linear Unit)表达式为:f(x)=max(0,x). 2.tensorflow实现 #!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf input_data = tf.constant( [[0, 10, -10],[-1,2,-3]] , dtype = tf.float32 ) output = tf.nn.relu(input…
Active Function 激活函数 原创文章,请勿转载哦~!! 觉得有用的话,欢迎一起讨论相互学习~Follow Me Tensorflow提供了多种激活函数,在CNN中,人们主要是用tf.nn.relu,是因为它虽然会带来一些信息损失,但是性能较为突出.开始设计模型时,推荐使用tf.nn.relu,但高级用户也可创建自己的激活函数.评价某个激活函数是否有用时,需要考虑的因素有: 1)该函数应是单调的, 这样输出便会随着输入的增长而增长,从而使利用梯度下降法寻找局部极值点成为可能. 2)该…
书上的代码: # coding: utf-8 # In[1]: import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from pylab import * # In[19]: def show_activation(activation,y_lim=5): x=np.arange(-10., 10., 0.01) ts_x = tf.Variable(x) ts_y =activation(ts_x…
arXiv 上公开的一篇 NIPS 投稿论文<Self-Normalizing Neural Networks>引起了圈内极大的关注,它提出了缩放指数型线性单元(SELU)而引进了自归一化属性,该单元主要使用一个函数 g 映射前后两层神经网络的均值和方差以达到归一化的效果. Shao-Hua Sun 在 Github 上放出了 SELU 与 Relu.Leaky Relu 的对比,机器之心对比较结果进行了翻译介绍,具体的实现过程可参看以下项目地址. 项目地址:shaohua0116/Activ…
激活函数是人工神经网络的一个极其重要的特征.它决定一个神经元是否应该被激活,激活代表神经元接收的信息与给定的信息有关. 激活函数对输入信息进行非线性变换. 然后将变换后的输出信息作为输入信息传给下一层神经元. 激活函数的作用 当我们不用激活函数时,权重和偏差只会进行线性变换.线性方程很简单,但解决复杂问题的能力有限.没有激活函数的神经网络实质上只是一个线性回归模型.激活函数对输入进行非线性变换,使其能够学习和执行更复杂的任务.我们希望我们的神经网络能够处理复杂任务,如语言翻译和图像分类等.线性变…
http://c.biancheng.net/view/1911.html 每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出值限定在一个定义的范围内. 如果 xi 是第 j 个输入,Wj 是连接第 j 个输入到神经元的权重,b 是神经元的偏置,神经元的输出(在生物学术语中,神经元的激活)由激活函数决定,并且在数学上表示如下:   这里,g 表示激…
每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出值限定在一个定义的范围内. 如果 xi 是第 j 个输入,Wj 是连接第 j 个输入到神经元的权重,b 是神经元的偏置,神经元的输出(在生物学术语中,神经元的激活)由激活函数决定,并且在数学上表示如下:   这里,g 表示激活函数.激活函数的参数 ΣWjxj​+b 被称为神经元的活动. 这里对给定输…
TensorFlow六种激活函数 每个神经元都必须有激活函数.神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出值限定在一个定义的范围内. 如果 xi 是第 j 个输入,Wj 是连接第 j 个输入到神经元的权重,b 是神经元的偏置,神经元的输出(在生物学术语中,神经元的激活)由激活函数决定,并且在数学上表示如下: 这里,g 表示激活函数.激活函数的参数 ΣWjxj​+b 被称为神经元的活…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
(1)激活函数 激活函数(Activation function)并不是指这个函数去激活什么,而是指如何把“激活的神经元的特征”通过函数把特征保留映射出来.对输入信息进行非线性变换. 线性模型的最大特点是任意线性模型的组合仍然还是线性模型.只通过线性模型,任意层的全连接神经网络和单层神经网络模型的表达能力没有任何区别.线性模型最大的局限性是表达能力不够,解决的问题有限.线性模型就能解决线性可分问题. 常用激活函数 1)sigmoid函数(曲线很像“S”型) 公式: 曲线图: sigmoid函数也…
激活函数 各激活函数曲线对比 常用激活函数: tf.sigmoid() tf.tanh() tf.nn.relu() tf.nn.softplus() tf.nn.softmax() tf.nn.dropout() tf.nn.elu() import numpy as np import matplotlib.pyplot as plt from scipy.misc import derivative def sigmoid(x): y = 1 / (1 + np.exp(-x)) retu…
In general ELU > leaky ReLU(and its variants) > ReLU > tanh > logistic. If you care a lot about runtime performance, then you may prefer leaky ReLUs over ELUs. If you don't want to tweak yet another hyperparameter, you may just use the default…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.01 LEARNING_RATE_DECAY = 0.…
激励函数的目的是为了调节权重和误差. relu max(0,x) relu6 min(max(0,x),6) sigmoid 1/(1+exp(-x)) tanh ((exp(x)-exp(-x))/(exp(x)+exp(-x)) 双曲正切函数的值域是(-1,1) softsign x/(abs(x)+1) softplus log(exp(x)+1) elu (exp(x)+1)if x<0 else x import math import numpy as np import panda…
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输入如下代码: from __future__ import absolute_import # 绝对导入 from __future__ import division # 精确除法,/是精确除,//是取整除 from __future__ import print_function # 打印函数…
一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day 6: 快速入门 Tensorflow 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找. Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相…
tensorflow笔记(二)之构造一个简单的神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7425200.html 前言 这篇博客将一步步构建一个tensorflow的神经网络去拟合曲线,并将误差和结果可视化.博客的末尾会放本篇博客的jupyter notebook,可以下载自己调试调试. 实践--构造神经网络 本次构造的神经网络是要拟合一个二次曲线,神经网络的输入层是一个特征,即只有一个神经元,隐藏层有10个特…
1. MNIST数据集 1.1 概述 Tensorflow框架载tensorflow.contrib.learn.python.learn.datasets包中提供多个机器学习的数据集.本节介绍的是MNIST数据集,其功能都定义在mnist.py模块中. MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片: 图 11 它也包含每一张图片对应的标签,告诉我们这个是数字几.比如,上面这四张图片的标签分别是5,0,4,1 1.2 加载 有两种方式可以获取MNIST数据集: 1) 自动下载…
1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对于上图中隐藏层的第j个神经元的输出可以表示为: 其中,f是激活函数,bj为每个神经元的偏置. 1.2 卷积神经网络 1.2.1 网络结构 卷积神经网络与多层前馈神经网络的结构不一样,其每层神经元与下一层神经元不是全互连,而是部分连接,即每层神经层中只有部分的神经元与下一层神经元有连接,但是神经元之间…
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import tensorflow as tf # 用 tf.session.run() 里 feed_dict 参数设置占位 tensor, 如果传入 feed_dict的数据与 tensor 类型不符,就无法被正确处理 x = tf.placeholder(tf.string) y = tf.placehol…
1. Tensorflow 逻辑回归实现手写识别 1.1. 逻辑回归原理 1.1.1. 逻辑回归 1.1.2. 损失函数 1.2. 实例:手写识别系统 1.1. 逻辑回归原理 1.1.1. 逻辑回归 在现实生活中,我们遇到的数据大多数都是非线性的,因此我们不能用上一章线性回归的方法来进行数据拟合.但是我们仍然可以从线性模型着手开始第一步,首先对输入的数据进行加权求和. 线性模型: \[z=w{x}+b\] 其中w我们称为"权重",b为偏置量(bias),\({x}\)为输入的样本数据,…
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:付越 导语 Tensorflow在更新1.0版本之后多了很多新功能,其中放出了很多用tf框架写的深度网络结构(https://github.com/tensorflow/models ),大大降低了开发难度,利用现成的网络结构,无论fine-tuning还是重新训练方便了不少.最近笔者终于跑通TensorFlow Object Detection API的ssd_mobilenet_v1模型,这里记录下如何完整跑通数据准备到模型…
本文主要是使用[监督学习]实现一个图像分类器,目的是识别图片是猫还是狗. 从[数据预处理]到 [图片预测]实现一个完整的流程, 当然这个分类在 Kaggle 上已经有人用[迁移学习](VGG,Resnet)做过了,迁移学习我就不说了,我自己用 Keras + Tensorflow 完整的实现了一遍. 准备工作: 数据集:Dogs vs. Cats注册激活困难,自己想想办法,Ps:实在注册不了百度云有下载自己搜搜 使用编程语言:当然是Python 3,你问我为什么,当然是人生苦短. 使用机器学习库…
卷积神经网络(convolutional neural network,CNN),权值共享(weight sharing)网络结构降低模型复杂度,减少权值数量,是语音分析.图像识别热点.无须人工特征提取.数据重建,直接把图片作输入,自动提取特征,对平移.比例缩放.倾斜等图片变形具有高度不变形.卷积(convolution),泛函数分析积分变换数学方法,两个函数f和g生成第三个函数数学算子,表征函灵敏f与g翻转.平移重叠部分面积.f(x).g(x)为R1两个可积函数.积分新函数为函数f与g卷积.∫…
构造你自己的第一个神经网络 通过手势的图片识别图片比划的数字:1) 现在用1080张64*64的图片作为训练集2) 用120张图片作为测试集  定义初始化值 def load_dataset(): train_dataset = h5py.File('datasets/train_signs.h5', "r") train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set…
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现中,经过200次迭代后的LeNet-5的准确率为60%左右,这个结果差强人意,毕竟是二十年前写的网络结构,结果简单,层数也很少,这一节中我们讲讲在2012年的Image比赛中大放异彩的AlexNet,并用AlexNet对cifar-10数据进行分类,对比上周的LeNet-5的效果. 什么是AlexN…