bzoj 1135 [POI2009]Lyz 线段树+hall定理】的更多相关文章

1135: [POI2009]Lyz Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 573  Solved: 280[Submit][Status][Discuss] Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人. 对于每次操作,输出溜冰鞋是否足够. Input n m k d ( 1≤n≤2…
Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人. 对于每次操作,输出溜冰鞋是否足够. Input n m k d ( 1≤n≤200,000 , 1≤m≤500,000 , 1≤k≤10^9 , 0≤d≤n ) ri xi ( 1≤i≤m, 1≤ri≤n-d , |xi|≤10^9 ) Output 对于每个操作,输出一行,TAK表示够 NIE…
[BZOJ 1135][POI2009]Lyz 题意 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的溜冰鞋. 有 \(m\) 次操作,每次包含两个数 \(r_i,x_i\) 代表来了 \(x_i\) 个 $r_i \(号脚的人.\)x_i$ 为负,则代表走了这么多人. 对于每次操作,输出溜冰鞋是否足够.足够输出 TAK, 否则输出 NIE. \(n\le 2\times 10^5,m\le5\ti…
[BZOJ1135][POI2009]Lyz Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人. 对于每次操作,输出溜冰鞋是否足够. Input n m k d ( 1≤n≤200,000 , 1≤m≤500,000 , 1≤k≤10^9 , 0≤d≤n ) ri xi ( 1≤i≤m, 1≤ri≤n-d , |xi|≤10^9 ) Output…
传送门 题意: 现在有\(n\)堆石子,每堆石子有\(a_i\)个. 之后会有\(m\)次,每次选择\([l,r]\)的石子堆中的石子扔\(k\)个,若不足,则尽量扔. 现在输出\(1\)~\(m\)次,每次最多能取到多少石子(输出第\(i\)次的情况时,要考虑前\(i-1\)次). 给出的区间不存在包含关系. 思路: 稍微暴力点想就是一个二分图,将\(k_i\)拆在左边,然后石子在右边,每次最大匹配. 但这做法显然不可行,时间复杂度不能承受. 这种一般就考虑\(hall\)定理:假设前面都满足…
1135: [POI2009]Lyz https://lydsy.com/JudgeOnline/problem.php?id=1135 分析: hall定理+线段树连续区间的最大的和. 首先转化为二分图的模型,然后根据hall定理 Hall定理: 此定理使用于组合问题中,二部图G中的两部分顶点组成的集合分别为X, Y, X={X1, X2, X3,X4,.........,Xm}, Y={y1, y2, y3, y4 ,.........,yn},G中有一组无公共点的边,一端恰好为组成X的点的…
Bzoj 2752 高速公路 (期望,线段树) 题目链接 这道题显然求边,因为题目是一条链,所以直接采用把边编上号.看成序列即可 \(1\)与\(2\)号点的边连得是. 编号为\(1\)的点.查询的时候把\(r - 1\)就好了. 这里的期望显然就是路径的平均值. 期望值: \[\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}\] 下面部分可以直接算出: 上面这一部分比较难维护. 考虑每一条边会被走过多少次. \[ans = \su…
https://www.luogu.org/problem/P3488 根据Hall定理 左边任意一个区间L-R a[i]的和sum[l~r] 都要<= (R-L+1+d)*K 把(R-L+1)*K 挪到左边 即为 对任意L-R区间 有 $\sum_{i=L}^R{(a[i]-k)} \le K*D$ 然后用线段树最大字段和去维护它即可 #include<bits/stdc++.h> #define RG register using namespace std; typedef lon…
题面戳我 Solution 二分图是显然的,用二分图匹配显然在这个范围会炸的很惨,我们考虑用霍尔定理. 我们任意选取穿\(l,r\)的号码鞋子的人,那么这些人可以穿的鞋子的范围是\(l,r+d\),这个时候我们可以根据霍尔定理得出满足人人有鞋子穿的时候的式子是 令\(sum[i]\)表示穿\(i\)号鞋子的人数 \[\sum^r_{i=l} sum[i] \leq (r-l+1+d)*k\] 我们把这个式子整理下: \[\sum^r_{i=l} (sum[i]-k) \leq d*k\] 我们会…
题意 有\(1\)到\(n(1 \le n \le 200000)\)号的溜冰鞋各\(k(1 \le k \le 10^9)\)双.已知\(x\)号脚的人可以穿\(x\)到\(x+d\)的溜冰鞋. 有\(m(1 \le m \le 500000)\)次操作,每次来了\(x_i\)个\(r_i\)号脚的人.\(x_i\)为负,则代表走了这么多人.对于每次操作,输出溜冰鞋是否足够. 分析 容易发现是二分图模型,然而数据太大. 题解 根据Hall定理:如果存在\(X\)的完备匹配,则\(X\)中任意\…