犀利的开头 在机器学习中,我们用训练数据集去训练(学习)一个model(模型),通常的做法是定义一个Loss function(误差函数),通过将这个Loss(或者叫error)的最小化过程,来提高模型的性能(performance).然而我们学习一个模型的目的是为了解决实际的问题(或者说是训练数据集这个领域(field)中的一般化问题),单纯地将训练数据集的loss最小化,并不能保证在解决更一般的问题时模型仍然是最优,甚至不能保证模型是可用的.这个训练数据集的loss与一般化的数据集的loss…
准: bias描述的是根据样本拟合出的模型的输出预测结果的期望与样本真实结果的差距,简单讲,就是在样本上拟合的好不好.要想在bias上表现好,low bias,就得复杂化模型,增加模型的参数,但这样容易过拟合 (overfitting),过拟合对应上图是high variance,点很分散.low bias对应就是点都打在靶心附近,所以瞄的是准的,但手不一定稳. 确: varience描述的是样本上训练出来的模型在测试集上的表现,要想在variance上表现好,low varience,就要简化…
先上图: 泛化误差可表示为偏差.方差和噪声之和 偏差(bias):学习算法的期望预测与真实结果(train set)的偏离程度(平均预测值与真实值之差),刻画算法本身的拟合能力: 方差(variance):使用同规模的不同训练集进行训练时带来的性能变化(预测值与平均预测值之差的平方的期望),刻画数据扰动带来的影响: 但是这两者其实是有冲突的,这称为bias-variance trade-off.给定一个任务,我们可以控制算法的训练程度(如决策树的层数).在训练程度较低时,拟合能力较差,因此训练数…
前几天搜狗的一道笔试题,大意是在随机森林上增加一棵树,variance和bias如何变化呢? 参考知乎上的讨论:https://www.zhihu.com/question/27068705 另外可参考林轩田老师在机器学习技法的<Blending and Bagging>中的讲解: 综上,bias反应的是模型在样本上的值与真实值之间的误差,反应的是模型的准确度.对于blending,它反应的是模型越复杂,它的bias就越小: 对于cross-validation,当训练越充分,bias就越小.…
val df4=spark.sql("SELECT mean(age),variance(age),stddev(age),corr(age,yearsmarried),skewness(age),kurtosis(age) FROM Affairs") df4.show +--------+------------------+------------------+-----------------------+-----------------+------------------…
安装weblogic12.1.3.0时,输入的安装命令是: 老是报这个错误. 百度半天好像没人报过这错……看来只有我这么粗心了…… 后来发现wls.rsp里面的Oracle_HOME指向目录错误,修改正确后,再次安装.  问题解决…
需要把haar分类器训练的结果xml数据放在名为haarcascades的文件夹下进行调用. 将: face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_defalt.xml')eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') 改为: face_cascade = cv2.CascadeClassifier("./haarcascades/haarcascad…
Error | 误差 Bias | 偏差 – 衡量准确性 Variance | 方差 – 衡量稳定性 首先我们通常在实际操作中会直接用错误率或者与之对应的准确率来衡量一个模型的好坏,但是更加准确的做法是误差衡量时综合考虑偏差和方差的共同作用. 所谓偏差Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度.Variance反映的是模型每一次输出结果与模型输出期望值之间的误差,即模型的稳定性. 举个例子,对于一个二分类问题,比如测试图片是不是猫,是猫的话就是1,不是猫就是2. 现…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) 今天这篇文章的主要内容是第1-2课的笔记. ML Lecture 1: Regression - Demo 1.Machine Learning最主要有三个步骤:(1)选择a set of function,也就是选择一个合…
What Is the Difference Between Accuracy and Precision? https://www.thoughtco.com/difference-between-accuracy-and-precision-609328 Key Takeaways: Accuracy Versus Precision Accuracy is how close a value is to its true value. An example would be how clo…