kalman 滤波 演示与opencv代码】的更多相关文章

在机器视觉中追踪时常会用到预测算法,kalman是你一定知道的.它可以用来预测各种状态,比如说位置,速度等.关于它的理论有很多很好的文献可以参考.opencv给出了kalman filter的一个实现,而且有范例,但估计不少人对它的使用并不清楚,因为我也是其中一个.本文的应用是对二维坐标进行预测和平滑 使用方法: 1.初始化 const int stateNum=4;//状态数,包括(x,y,dx,dy)坐标及速度(每次移动的距离) const int measureNum=2;//观测量,能看…
序言:在我的疲劳检测工程 AviTest中!显示框为320*240,使用OpenCV的kalman滤波算法,可以实现简单的锁相追踪-实现对眼球的位置锁定. 代码如下: CvPoint WishchinKalman( IplImage* Image,CvPoint pCenter){ CvPoint correctMat; correctMat.x = 0; correctMat.y = 0; const int stateNum = 4; const int measureNum = 2; co…
Kalman滤波简介 Kalman滤波是一种线性滤波与预测方法,原文为:A New Approach to Linear Filtering and Prediction Problems.文章推导很复杂,看了一半就看不下去了,既然不能透彻理解其原理,但总可以通过实验来理解其具体的使用方法. Kalman滤波分为2个步骤,预测(predict)和校正(correct).预测是基于上一时刻状态估计当前时刻状态,而校正则是综合当前时刻的估计状态与观测状态,估计出最优的状态.预测与校正的过程如下: 预…
本文为原创文章,转载请注明出处,http://www.cnblogs.com/ycwang16/p/5999034.html 前面介绍了Bayes滤波方法,我们接下来详细说说Kalman滤波器.虽然Kalman滤波器已经被广泛使用,也有很多的教程,但我们在Bayes滤波器的框架上,来深入理解Kalman滤波器的设计,对理解采用Gaussian模型来近似状态分布的多高斯滤波器(Guassian Multi-Hyperthesis-Filter)等都有帮助. 一. 背景知识回顾 1.1 Bayes滤…
数据拟合能够估计出数据变化的趋势,另外一个同等重要的应用是如何利用这一趋势,预测下一时刻数据可能的值.通俗点儿说,你观察苍蝇(蚊子,蜜蜂)飞了几秒,你也许会想“它下一个时刻可能在哪儿”,“呈现出什么样的状态”诸如此类的问题.预知未来这档子事儿对我们有一种不可抗拒的吸引力.别看我们预测的未来很近,但这对于实际应用有很大的帮助.比如减小解空间的范围,便于搜索.对于搜索问题,预测可以看成是对从当前状态到目标状态的启发评价函数.好吧,我承认我陷得太深了,都是复习人工智能搞得.扯得有点儿远了,继续说我们的…
很早之前写过<双边滤波算法的简易实现bilateralFilter>. 当时学习参考的代码来自cuda的样例. 相关代码可以参阅: https://github.com/johng12/cudaSamples/tree/master/cudaSamples/3_Imaging/bilateralFilter 由于算法逻辑非常清晰,就不多解释了. 需要补课的,请移步<o(1)复杂度之双边滤波算法的原理.流程.实现及效果.> 代码见:bilateralFilter_cpu.cpp 文件…
2017拜拜啦,怎么过元旦呢?当然是果断呆实验室过... 应该是大二的时候首次听说kalman,一直到今天早上,我一看到其5条"黄金公式",就会找各种理由放弃,看不懂呀...但是研究lidar定位需要以此为基础,故立志掌握,然后集中精力看了一天,我发现我居然看懂了...作为白巧克力的忠实粉,所以果断先攻读Ta关于kalman的两篇blog,照着第一篇blog的公式推导,虽然没全部推出来,但是对5条公式的来源大致了解了,然后跑了第二篇blog的matlab实例,对照5条公式,感觉明白了什…
kalman滤波原理(通俗易懂) 1. 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯.1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位.1957年于哥伦比亚大学获得博士学位.我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文<A New Appr…
Kalman滤波简介 Kalman滤波是一种线性滤波与预测方法,原文为:A New Approach to Linear Filtering and Prediction Problems.文章推导很复杂,看了一半就看不下去了,既然不能透彻理解其原理,但总可以通过实验来理解其具体的使用方法. Kalman滤波分为2个步骤,预测(predict)和校正(correct).预测是基于上一时刻状态估计当前时刻状态,而校正则是综合当前时刻的估计状态与观测状态,估计出最优的状态.预测与校正的过程如下: 预…
2017拜拜啦,怎么过元旦呢?当然是果断呆实验室过... 应该是大二的时候首次听说kalman,一直到今天早上,我一看到其5条“黄金公式”,就会找各种理由放弃,看不懂呀...但是研究lidar定位需要以此为基础,故立志掌握,然后集中精力看了一天,我发现我居然看懂了...作为白巧克力的忠实粉,所以果断先攻读Ta关于kalman的两篇blog,照着第一篇blog的公式推导,虽然没全部推出来,但是对5条公式的来源大致了解了,然后跑了第二篇blog的matlab实例,对照5条公式,感觉明白了什么...然…