2017年2月16日,Google正式对外发布Google TensorFlow 1.0版本,并保证本次的发布版本API接口完全满足生产环境稳定性要求.这是TensorFlow的一个重要里程碑,标志着它可以正式在生产环境放心使用.在国内,从InfoQ的判断来看,TensorFlow仍处于创新传播曲线的创新者使用阶段,大部分人对于TensorFlow还缺乏了解,社区也缺少帮助落地和使用的中文资料.InfoQ期望通过深入浅出TensorFlow系列文章能够推动Tensorflow在国内的发展.欢迎加…
1. MNIST数据集 1.1 概述 Tensorflow框架载tensorflow.contrib.learn.python.learn.datasets包中提供多个机器学习的数据集.本节介绍的是MNIST数据集,其功能都定义在mnist.py模块中. MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片: 图 11 它也包含每一张图片对应的标签,告诉我们这个是数字几.比如,上面这四张图片的标签分别是5,0,4,1 1.2 加载 有两种方式可以获取MNIST数据集: 1) 自动下载…
数据集 由Yann Le Cun建立,训练集55000,验证集5000,测试集10000,图片大小均为28*28 下载 # coding:utf-8 # 从tensorflow.examples.tutorials.mnist引入模块.这是TensorFlow为了教学MNIST而提前编制的程序 from tensorflow.examples.tutorials.mnist import input_data # 从MNIST_data/中读取MNIST数据.这条语句在数据不存在时,会自动执行下…
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 softmax   这里用到的tf基本知识 tf.tensor-张量,其实就是矩阵.官方说法是原料 tf.Varible-变量,用来记录数据,参数.其实也是个矩阵.不过要初始化后才有具体的值 tf.Session()-会话,就是个模型,我们可以在里面添加数据流动方向,运算节点 香农熵 香农熵是计算信息…
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- coding: utf-8 -*- """ Created on Fri May 25 14:09:45 2018 @author: Administrator """ #导入数据集 from tensorflow.examples.tutoria…
TensorFlow 2 简介 TensorFlow 是由谷歌在 2015 年 11 月发布的深度学习开源工具,我们可以用它来快速构建深度神经网络,并训练深度学习模型.运用 TensorFlow 及其他开源框架的主要目的,就是为我们提供一个更利于搭建深度学习网络的模块工具箱,使开发时能够简化代码,最终呈现出的模型更加简洁易懂. 2019 年,TensorFlow 推出了 2.0 版本,也意味着 TensorFlow 从 1.x 正式过度到 2.x 时代.根据 TensorFlow 官方 介绍内容…
深入浅出 JMS(二) - ActiveMQ 入门指南 上篇博文深入浅出 JMS(一) – JMS 基本概念,我们介绍了消息通信的规范JMS,这篇博文介绍一款开源的 JMS 具体实现-- ActiveMQ.ActiveMQ 是一个易于使用的消息中间件. 一.消息中间件和 ActiveMQ (1) 消息中间件(MOM:Message Orient middleware) 我们简单的介绍一下消息中间件,对它有一个基本认识就好,消息中间件有很多的用途和优点: 将数据从一个应用程序传送到另一个应用程序,…
一:创建TensorFlow工作环境目录 1. 在anconda安装目录下找到envs目录然后进入 2. 在当前目录下创建一个文件夹改名为tensorflow 二: 创建TensorFlow工作环境 1. 按下win+R键打开命令行 2. 输入conda create --name tensorflow python=3.5:然后回车 3. 接下来系统提示是否安装,输入y回车 4. 工作环境创建完成 三:安装TensorFlow 1. 使用命令activate tensorflow 切换到ten…
神经网络在命名实体识别中的应用 所有的这些包括之前的两篇都可以通过tensorflow 模型的托管部署到 google cloud 上面,发布成restful接口,从而与任何的ERP,CRM系统集成. 天呀,这就是赤果果的钱呀.好血腥.感觉tensorflow的革命性意义就是能够将学校学到的各种数学算法成功地与各种系统结合起来. 实现了matlab一直不能与其他系统结合的功能,并且提供GPU并行计算的功能,简直屌爆了 理论上来讲像啥 运输问题,规划问题,极值问题.都可以通过tensorflow来…
本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get_started/mnist/beginners提供. 大部分人已经对 MNIST 数据集很熟悉了,它是机器学习的基础,包含手写数字的图像及其标签来说明它是哪个数字. 对于逻辑回归,对输出 y 使用独热(one-hot)编码.因此,有 10 位表示输出,每位的值为 1 或 0,独热意味着对于每个图片…