首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
15、R语言聚类树的绘图原理
】的更多相关文章
15、R语言聚类树的绘图原理
聚类广泛用于数据分析.去年研究了一下R语言聚类树的绘图原理.以芯片分析为例,我们来给一些样品做聚类分析.聚类的方法有很多种,我们选择Pearson距离.ward方法. 选择的样品有: "GSM658287.CEL", "GSM658288.CEL", "GSM658289.CEL", "GSM658290.CEL", "GSM658291.CEL", "GSM658292.CEL", &…
R语言学习笔记2——绘图
R语言提供了非常强大的图形绘制功能.下面来看一个例子: > dose <- c(20, 30, 40, 45, 60)> drugA <- c(16, 20, 27, 40, 60)> drugB <- c(15, 18, 25, 31, 40) > plot(dose, drugA, type="b") > plot(dose, drugB, type="b") 该例中,我们引入了R语言中第一个绘图函数plot.pl…
R语言学习2:绘图
本系列是一个新的系列,在此系列中,我将和大家共同学习R语言.由于我对R语言的了解也甚少,所以本系列更多以一个学习者的视角来完成. 参考教材:<R语言实战>第二版(Robert I.Kabacoff),书中所提到的John Cook的优秀博文,关于代码规范的<来自Google的R语言编码风格指南>. 目录 Part 1:图形参数 Unit 1:点型和线型 Unit 2:颜色 Unit 3:文本 Unit 4:图形尺寸与边界尺寸 Part 2:添加要素 Unit 1:添加标题和坐标轴标…
R语言:ggplot2精细化绘图——以实用商业化图表绘图为例
本文版权归http://www.cnblogs.com/weibaar 本文旨在介绍R语言中ggplot2包的一些精细化操作,主要适用于对R画图有一定了解,需要更精细化作图的人,尤其是那些刚从excel转ggplot2的各位,有比较频繁的作图需求的人.不讨论那些样式非常酷炫的图表,以实用的商业化图表为主.包括以下结构: 1.画图前的准备:自定义ggplot2格式刷 2.画图前的准备:数据塑形利器dplyr / tidyr介绍 3.常用的商业用图: 1)简单柱形图+文本(单一变量) 2)分面柱形图…
R语言-聚类与分类
一.聚类: 一般步骤: 1.选择合适的变量 2.缩放数据 3.寻找异常点 4.计算距离 5.选择聚类算法 6.采用一种或多种聚类方法 7.确定类的数目 8.获得最终聚类的解决方案 9.结果可视化 10.解读类 11.验证结果 1.层次聚类分析 案例:采用flexclust的营养数据集作为参考 1.基于5种营养标准的27类鱼,禽,肉的相同点和不同点是什么 2.是否有一种办法把这些食物分成若干各类 1.1计算距离 data(nutrient,package = 'flexclust') head(n…
R语言聚类方法&主要软件包-K-means
主要4中软件包 stas:主要包含基本统计函数. cluster:用于聚类分析. fpc:含聚类算法函数(固定聚类.线性回归聚类等). mclust:处理高斯分布混合模型,通过EM算法实现聚类.分类及密度估计等. kmeans()函数用法: kmeans(x,centers,iter.max=10,nstart=1,algorithm=c("Hartigan-Wong","Lloyd","For-gy","MacQueen")…
R语言曲线拟合函数(绘图)
曲线拟合:(线性回归方法:lm) 1.x排序 2.求线性回归方程并赋予一个新变量 z=lm(y~x+I(x^2)+...) 3.plot(x,y) #做y对x的散点图 4.lines(x,fitted(z)) #添加拟合值对x的散点图并连线 曲线拟合:(nls) lm是将曲线直线化再做回归,nls是直接拟合曲线. 需要三个条件:曲线方程.数据位置.系数的估计值. 如果曲线方程比较复杂,可以先命名一个自定义函数. 例: f=function(x1, x2, a, b…
R语言中文社区历史文章整理(类型篇)
R语言中文社区历史文章整理(类型篇) R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterplots包,让你绘制不一样的图 今天再来谈谈REmap包 ggplot2你需要知道的都在这... R访问数据库管理系统(通过RODBC包和RMySQL包两种方式) NLP——自然语言处理(三)text2vec包 Rattle:数据挖掘的界面化操作 借助caret包实现特征选择的工作 R语言的高质量图形…
统计计算与R语言的资料汇总(截止2016年12月)
本文在Creative Commons许可证下发布. 在fedora Linux上断断续续使用R语言过了9年后,发现R语言在国内用的人逐渐多了起来.由于工作原因,直到今年暑假一个赴京工作的机会与一位统计专业的人士聊天,才知道R语言的强大威力!(当然这里没有贬低SPSS, SAS,Stata的意思). R语言是用于统计分析.绘图的语言和操作环境.R是属于GNU系统的一个自由.免费.源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具.它是统计领域广泛使用的诞生于 1980年左右的 S 语言的…
【机器学习与R语言】4-决策树
目录 1.决策树原理 2.决策树应用示例 2.1)收集数据 2.2)探索和准备数据 2.3)训练模型 2.4)评估模型性能 2.5)提高模型性能 通过自适应增强算法(boosting) 将惩罚因子分配到不同类型的错误上 1.决策树原理 决策树:树形结构流程图(漏斗型),模型本身包含一些列逻辑决策.数据分类从根节点开始,根据特征值遍历树上的各个决策节点. 几乎可应用于任何类型的数据建模,且性能不错.但当数据有大量多层次的名义特征或者大量的数值特征时,可能会生成一个过于复杂的决策树. 递归划分/分而…