深入理解hadoop之机架感知】的更多相关文章

深入理解hadoop之机架感知 机架感知 hadoop的replication为3,机架感知的策略为: 第一个block副本放在和client所在的datanode里(如果client不在集群范围内,则这第一个node是随机选取的).第二个副本放置在与第一个节点不同的机架中的datanode中(随机选择).第三个副本放置在与第二个副本所在节点同一机架的另一个节点上.如果还有更多的副本就随机放在集群的datanode里,这样如果第一个block副本的数据损坏,节点可以从同一机架内的相邻节点拿到数据…
接着上一篇来说.上篇说了hadoop网络拓扑的构成及其相应的网络位置转换方式,本篇主要讲通过两种方式来配置机架感知.一种是通过配置一个脚本来进行映射:另一种是通过实现DNSToSwitchMapping接口的resolve()方法来完成网络位置的映射. hadoop自身是没有机架感知能力的,必须通过人为的设定来达到这个目的.在FSNamesystem类中的resolveNetworkLocation()方法负载进行网络位置的转换.其中dnsToSwitchMapping变量代表了完成具体转换工作…
Hadoop作为大数据处理的典型平台,在海量数据处理过程中,其主要限制因素是节点之间的数据传输速率.因为集群的带宽有限,而有限的带宽资源却承担着大量的刚性带宽需求,例如Shuffle阶段的数据传输不可避免,所以如何优化带宽资源的占用是一个值得思考的问题.仔细思考下,Hadoop数据传输的需求主要表现在几个方面: Map阶段的数据传输:Map阶段的非本地化任务需要远程拷贝数据块,然而这种带宽消耗在一定程度上不是必要的,如果数据能做到很高程度的本地化可以减少这个阶段的数据传输带来的带宽消耗. Shu…
转载自http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2843015.html 背景 分布式的集群通常包含非常多的机器,由于受到机架槽位和交换机网口的限制,通常大型的分布式集群都会跨好几个机架,由多个机架上的机器共同组成一个分布式集群.机架内的机器之间的网络速度通常都会高于跨机架机器之间的网络速度,并且机架之间机器的网络通信通常受到上层交换机间网络带宽的限制. 具体到Hadoop集群,由于hadoop的HDFS对数据文件的分布式存放是按照分…
背景 分布式的集群通常包含非常多的机器,由于受到机架槽位和交换机网口的限制,通常大型的分布式集群都会跨好几个机架,由多个机架上的机器共同组成一个分布式集群.机架内的机器之间的网络速度通常都会高于跨机架机器之间的网络速度,并且机架之间机器的网络通信通常受到上层交换机间网络带宽的限制. 具体到Hadoop集群,由于hadoop的HDFS对数据文件的分布式存放是按照分块block存储,每个block会有多个副本(默认为3),并且为了数据的安全和高效,所以hadoop默认对3个副本的存放策略为: 第一个…
1.背景 Hadoop在设计时考虑到数据的安全与高效,数据文件默认在HDFS上存放三份,存储策略为本地一份,同机架内其它某一节点上一份,不同机架的某一节点上一份.这样如果本地数据损坏,节点可以从同一机架内的相邻节点拿到数据,速度肯定比从跨机架节点上拿数据要快:同时,如果整个机架的网络出现异常,也能保证在其它机架的节点上找到数据.为了降低整体的带宽消耗和读取延时,HDFS会尽量让读取程序读取离它最近的副本.如果在读取程序的同一个机架上有一个副本,那么就读取该副本.如果一个HDFS集群跨越多个数据中…
背景 分布式的集群通常包含非常多的机器,由于受到机架槽位和交换机网口的限制,通常大型的分布式集群都会跨好几个机架,由多个机架上的机器共同组成一个分布式集群.机架内的机器之间的网络速度通常都会高于跨机架机器之间的网络速度,并且机架之间机器的网络通信通常受到上层交换机间网络带宽的限制. 具体到Hadoop集群,由于hadoop的HDFS对数据文件的分布式存放是按照分块block存储,每个block会有多个副本(默认为3),并且为了数据的安全和高效,所以hadoop默认对3个副本的存放策略为: 第一个…
Hadoop机架感知 1.背景 Hadoop在设计时考虑到数据的安全与高效,数据文件默认在HDFS上存放三份,存储策略为本地一份, 同机架内其它某一节点上一份,不同机架的某一节点上一份. 这样如果本地数据损坏,节点可以从同一机架内的相邻节点拿到数据,速度肯定比从跨机架节点上拿数据要快: 同时,如果整个机架的网络出现异常,也能保证在其它机架的节点上找到数据. 为了降低整体的带宽消耗和读取延时,HDFS会尽量让读取程序读取离它最近的副本. 如果在读取程序的同一个机架上有一个副本,那么就读取该副本.…
Hadoop的机架感知 Hadoop有一个“机架感知”特性.管理员可以手工定义每个slave数据节点的机架号.为什么要做这么麻烦的事情?有两个原因:防止数据丢失和提高网络性能.     为了防止数据丢失,Hadoop会将每个数据块复制到多个机器上.想象一下,如果某个数据块的所有拷贝都在同一个机架的不同机器上,而这个机架刚好发生故障了(交换机坏了,或者电源掉了),这得有多悲剧?为了防止出现这种情况,必须要有一个人来记住所有数据节点在网络中的位置,并且用这些知识来确定——把数据的所有拷贝们放在哪些节…
一.背景   分布式的集群通常包含非常多的机器,由于受到机架槽位和交换机网口的限制,通常大型的分布式集群都会跨好几个机架,由多个机架上的机器共同组成一个分布式集群.机架内的机器之间的网络速度通常都会高于跨机架机器之间的网络速度,并且机架之间机器的网络通信通常受到上层交换机间网络带宽的限制. Hadoop在设计时考虑到数据的安全与高效,数据文件默认在HDFS上存放三份,存储策略为: 第一个block副本放在客户端所在的数据节点里(如果客户端不在集群范围内,则从整个集群中随机选择一个合适的数据节点来…