求得θ值后用模型来预测 / 计算模型的精度  ex2.m部分程序 %% ============== Part 4: Predict and Accuracies ==============% After learning the parameters, you'll like to use it to predict the outcomes% on unseen data. In this part, you will use the logistic regression model%…
PV计算模型 现有的PV计算公式是: 每台服务器每秒平均PV量 =( (总PV*80%)/(24*60*60*40%))/服务器数量 =2*(总PV)/* (24*60*60) /服务器数量 通过定积分求整个分布图的面积,然后求出最高值附近范围内的定积分,可以求得占据了80%的pv量的总时间.根据这个数据,得出计算pv的公式变成: 每台服务器每秒平均PV量= ( (80%*总PV)/(24*60*60*(9/24)))/服务器数量 即 每台服务器每秒平均PV量=2.14*(总PV)/* (24*…
一文详解LDA主题模型 - 达观数据 - SegmentFault 思否 https://segmentfault.com/a/1190000012215533 SELECT COUNT(1) FROM myu_oriv_t; #CREATE TABLE myu_oriv_t AS SELECT * FROM (SELECT t.aid,t.label,o.* FROM myt t LEFT JOIN myu_oriv o ON t.uid=o.uid) AS t; SELECT DISTINC…
不同的λ(0,1,10,100)值对regularization的影响\ 预测新的值和计算模型的精度 %% ============= Part 2: Regularization and Accuracies =============% Optional Exercise:% In this part, you will get to try different values of lambda and % see how regularization affects the decisio…
基于MATLAB的中值滤波均值滤波以及高斯滤波的实现 作者:lee神 1.   背景知识 中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值. 中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点. 方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数…
原文地址:MATLAB中的fft后为何要用fftshift fft是一维傅里叶变换,即将时域信号转换为频域. fftshift是针对频域的,将FFT的DC分量移到频谱中心,重新排列fft,fft1和……ftn的输出结果. fftshift就是对换数据的左右两边比如x=[1 2 3 4]fftshift(x) ->[3 4 1 2] IFFTSHIFT Inverse FFT shift.(就是fftshift的逆) x=[1     2     3     4     5]; y=fftshif…
YII2 用 in查询的时候出现无结果, 删除某些值后查询有结果, 在数组前用了一个 array_merge 合并了2个数组. 排查发现是 数组中键值没有挨着从0开始 另外没有从小到大, 没观察室哪个因素影响了  直接用 sort 提前排序就可以了…
使用matlab批量处理图像后在指定文件夹存储 clear;clc;close all; Files=dir('D:\文件及下载相关\文档\MATLAB\postgraduate\Kodak\*.jpg'); N=length(Files); Names={}; Images={}; :N Names{k}=Files(k).name; Images{k}=imread(['D:\文件及下载相关\文档\MATLAB\postgraduate\Kodak\' Names{k}]); figure(…
总结:不平衡数据的分类,(1)数据层面:使用过采样是主流,过采样通常使用smote,或者少数使用数据复制.过采样后模型选择RF.xgboost.神经网络能够取得非常不错的效果.(2)模型层面:使用模型集成,样本不做处理,将各个模型进行特征选择.参数调优后进行集成,通常也能够取得不错的结果.(3)其他方法:偶尔可以使用异常检测技术,主要有IsolationForest,OneClassSVM,LocalOutlierFactor,KMeans,其中IsolationForest效果最好.但是不及前…
VUE项目中使用this.$forceUpdate();解决页面v-for中修改item属性值后页面v-if不改变的问题:https://blog.csdn.net/jerrica/article/details/80944513…