MapReduce的输入文件是两个】的更多相关文章

[学习笔记] 1.对于MapReduce程序,如何输入文件是两个文件? 这一小节,我们将继续第一章大数据入门的HelloWorld例子做进一步的研究.这里,我们研究如何输入文件是两个文件.package com;import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import…
1.MapReduce代码入口 FileInputFormat.setInputPaths(job, new Path(input)); //设置MapReduce输入格式 job.waitForCompletion(true); 2.InputFormat分析 public abstract class InputFormat<K, V> { //获取输入文件的分片,仅是逻辑分片,并没有物理分片 public abstract List<InputSplit> getSplits…
MapReduce:将下面的两排数字先按第一排排序,然后再按第二排排序,要求顺序排序 文件如下: 这个案例主要考察我们对排序的理解,我们可以这样做: 代码如下(由于水平有限,不保证完全正确,如果发现错误欢迎指正): ①建一个TestBean package com; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.Writabl…
package org.apache.hadoop.examples; import java.util.HashMap; import java.io.IOException; import java.util.Iterator; import java.util.Map; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path…
https://my.oschina.net/itblog/blog/275294 摘要: 本文通过一个例子,详细介绍Hadoop 的 MapReduce过程. 分析MapReduce执行过程 MapReduce运行的时候,会通过Mapper运行的任务读取HDFS中的数据文件,然后调用自己的方法,处理数据,最后输出.Reducer任务会接收Mapper任务输出的数据,作为自己的输入数据,调用自己的方法,最后输出到HDFS的文件中.整个流程如图: Mapper任务的执行过程详解 每个Mapper任…
分析MapReduce执行过程 MapReduce运行的时候,会通过Mapper运行的任务读取HDFS中的数据文件,然后调用自己的方法,处理数据,最后输出. Reducer任务会接收Mapper任务输出的数据,作为自己的输入数据,调用自己的方法,最后输出到HDFS的文件中. Mapper任务的执行过程 每个Mapper任务是一个java进程,它会读取HDFS中的文件,解析成很多的键值对,经过我们覆盖的map方法处理后,转换为很多的键值对再输出.整个Mapper任务的处理过程又可以分为以下几个阶段…
说明 MapReduce是一种分布式计算模型,解决海量数据的计算问题,主要有Map和Reduce组成 用户使用时需要实现map()和reduce()两个函数,两个函数的形参都是key/value键值对 若以eclipse为开发环境,运行时出现内存不足的情况,需要修改虚拟机的参数 (例如把Default VM Arguments修改为 –Xms64m   -Xmx128m) MapReduce原理 如果block的大小默认是64MB,假设输入文件有两个,一个32MB,一个72MB,则小的文件时一个…
一.MapReduce执行过程 MapReduce运行时,首先通过Map读取HDFS中的数据,然后经过拆分,将每个文件中的每行数据分拆成键值对,最后输出作为Reduce的输入,大体执行流程如下图所示: 整个流程图具体来说:每个Mapper任务是一个java进程,它会读取HDFS中的文件,解析成很多的键值对,经过我们覆盖的map方法处理后,转换为很多的键值对再输出,整个Mapper任务的处理过程又可以分为以下几个阶段,如图所示. 在上图中,把Mapper任务的运行过程分为六个阶段. 第一阶段是把输…
Mapper任务的执行过程: 第一阶段是把输入文件按照一定的标准分片(InputSplit),每个输入片的大小是固定的.默认情况下,输入片(InputSplit)的大小与数据块(Block)的大小是相同的.如果数据块(Block)的大小是默认值64MB,输入文件有两个,一个是32MB,一个是72MB.那么小的文件是一个输入片,大文件会分为两个数据块,那么是两个输入片.一共产生三个输入片.每一个输入片由一个Mapper进程处理.这里的三个输入片,会有三个Mapper进程处理. 第二阶段是对输入片中…
1.MapReduce是如何执行任务的?2.Mapper任务是怎样的一个过程?3.Reduce是如何执行任务的?4.键值对是如何编号的?5.实例,如何计算没见最高气温? 分析MapReduce执行过程        MapReduce运行的时候,会通过Mapper运行的任务读取HDFS中的数据文件,然后调用自己的方法,处理数据,最后输出.Reducer任务会接收Mapper任务输出的数据,作为自己的输入数据,调用自己的方法,最后输出到HDFS的文件中.整个流程如图: Mapper任务的执行过程详…
一.mapreduce简介 MapReduce是一种分布式计算模型,是hadoop的核心组件之一,是Google提出的,主要用于搜索领域,解决海量数据的计算问题. MR有两个阶段组成:Map和Reduce,用户只需实现map()和reduce()两个函数,即可实现分布式计算. MapReduce执行流程 Client: 用来提交MapReduce作业. JobTracker: 用来协调作业的运行. TaskTracker: 用来处理作业划分后的任务. MapReduce原理 MapReduce的…
在本博文,我们要学习一个挖掘气象数据的程序.气象数据是通过分布在美国全国各地区的很多气象传感器每隔一小时进行收集,这些数据是半结构化数据且是按照记录方式存储的,因此非常适合使用 MapReduce 程序来统计分析. 我们使用的数据来自美国国家气候数据中心.美国国家海洋和大气管理局(简称 NCDCNOAA),这些数据按行并以 ASCII 格式存储,其中每一行是一条记录. 下面我们展示一行采样数据,其中重要的字段被突出显示.该行数据被分割成很多行以突出每个字段,但在实际文件中,这些字段被整合成一行且…
MapReduce工作原理图文详解 一 MapReduce程序执行流程 程序执行流程图如下: 流程分析:1.在客户端启动一个作业.2.向JobTracker请求一个Job ID.3.将运行作业所需要的资源文件复制到HDFS上,包括MapReduce程序打包的JAR文件.配置文件和客户端计算所得的输入划分信息.这些文件都存放在JobTracker专门为该作业创建的文件夹中.文件夹名为该作业的Job ID.JAR文件默认会有10个副本(mapred.submit.replication属性控制):输…
一.Hadoop集群的搭建与配置 1.节点准备 集群规划: 主机名 IP 安装的软件 运行的进程 weekend 01 192.168.1.60 jdk.hadoop NameNode.DFSZKFailoverController weekend 02 192.168.1.61 jdk.hadoop NameNode.DFSZKFailoverController weekend 03 192.168.1.62 jdk.hadoop ResourceManager weekend 04 192…
来源:http://blog.csdn.net/liuxiaochen123/article/details/8786715?utm_source=tuicool 2013-04-11 10:15 4941人阅读 评论(2) 收藏 举报   目录(?)[-] 1MapReduce理论简介 11 MapReduce编程模型 12 MapReduce处理过程 2运行WordCount程序 21 准备工作 22 运行例子 23 查看结果 3WordCount源码分析 31 特别数据类型介绍 32 旧的…
上篇文章hadoop之mapreduce详解(基础篇)我们了解了mapreduce的执行过程和shuffle过程,本篇文章主要从mapreduce的组件和输入输出方面进行阐述. 一.mapreduce作业控制模块以及其他功能 mapreduce包括作业控制模块,编程模型,数据处理引擎.这里我们重点阐述作业控制模块MRAppMaster. 1.1.MRAppMaster的构成 MRAppMaster主要有如下几个组件构成,如下图所示: 1.ContainerAllocator:与resourcem…
好文推荐!!!!! 原文见:http://blog.csdn.net/dm_vincent/article/details/40856569 Java 8中同时存在面向对象编程(OOP)和函数式编程(FP, Functional Programming)这两种编程范式.实际上,这两种范式并不矛盾,只是着重点不同.在OOP中,着重于通过丰富的类型系统对需要解决的问题进行建模:而FP中则着重于通过高阶函数和Lambda表达式来完成计算.所以我们完全可以将这两者融合在一起,对问题提出更加优雅的解决方案…
2. MapReduce 简介 MapReduce 实际上是分为两个过程 map 过程 : 数据的读取 reduce 过程 : 数据的计算 并行计算是一个非常复杂的过程, mapreduce是一个并行框架. 在Hadoop中,每个MapReduce任务都被初始化为一个Job,每个Job又可以分为两种阶段:map阶段和reduce阶段.这两个阶段分别用两个函数表示,即map函数和reduce函数 我们可以看下典型的官方列子 开发 用idea 开发开发 pom.xml 添加依赖 <dependenc…
1.map和reduce MapReduce任务过程分为两个处理阶段:map阶段和reduce阶段.每个节点都以键值对作为输入和输出,其类型由程序员来选择.程序员还需要编写两个函数:map函数和reduce函数. map阶段的输入时NCDC原始数据.我们选择文本格式作为输入格式,将数据集的每一行作为文本输入.键是某一行起始位置相对于文本起始位置的偏移量,不过我们不需要这个信息,所以将其忽略. 我们的map函数很简单.由于我们只对年份和气温属性感兴趣,所以只需要取出这两个字段数据.在本例中,map…
最近在写一个MR调度程序,在以服务进程中同时开启了两个MapReduce线程.这两个MR共享同一份输入源,此时会造成Cast异常: java.lang.ClassCastException: org.apache.hadoop.mapreduce.lib.input.FileSplit cannot be cast to org.apache.hadoop.mapred.InputSplit     at org.apache.hadoop.mapred.MapTask.runOldMapper…
http://blog.csdn.net/wind19/article/details/7716326 前言 几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显兴奋,觉得它们很是神秘,而神秘的东西常能勾起我的兴趣,在看过介绍它们的文章或论文之后,觉得Hadoop是一项富有趣味和挑战性的技术,且它还牵扯到了一个我更加感兴趣的话题:海量数据处理. 由此,最近凡是空闲时,便在看“Hadoop”,“MapReduce”“海量数据处理”这方面的论文.但在看论文的过程…
上次新霸哥给大家介绍了一些hadoop的相关知识,发现大家对hadoop有了一定的了解,但是还有很多的朋友对mapreduce很模糊,下面新霸哥将带你共同学习mapreduce编程模型. mapreduce编程模型可以利用大量的商用服务器构成大规模集群来解决处理千兆级别的数据量问题.mapreduce编程模型有两个比较独立的步骤,分别是map和reduce map:比较常见的就是数据初始读取和转换的步骤,同时在这个步骤中,每个独立的输入数据记录都进行并行处理. Reduce: 一个数据整合或者加…
4.1.3 半连接(Semi-join) 假设一个场景,需要连接两个很大的数据集,例如,用户日志和OLTP的用户数据.任何一个数据集都不是足够小到可以缓存在map作业的内存中.这样看来,似乎就不能使用reduce端的连接了.尽管不是必须,可以思考以下问题:如果在数据集的连接操作中,一个数据集中有的记录由于因为无法连接到另一个数据集的记录,将会被移除.这样还需要将整个数据集放到内存中吗?在这个例子中,在用户日志中的用户仅仅是OLTP用户数据中的用户中的很小的一部分.那么就可以从OLTP用户数据中只…
转自:http://blog.csdn.net/v_july_v/article/details/6704077 从hadoop框架与MapReduce模式中谈海量数据处理 前言 几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显兴奋,觉得它们很是神秘,而神秘的东西常能勾起我的兴趣,在看过介绍它们的文章或论文之后,觉得Hadoop是一项富有趣味和挑战性的技术,且它还牵扯到了一个我更加感兴趣的话题:海量数据处理. 由此,最近凡是空闲时,便在看“Hadoop”…
气象数据集 我们要写一个气象数据挖掘的程序.气象数据是通过分布在美国各地区的很多气象传感器每隔一小时进行收集,这些数据是半结构化数据且是按照记录方式存储的,因此非常适合使用 MapReduce 程序来统计分析. 数据格式 我们使用的数据来自美国国家气候数据中心.美国国家海洋和大气管理局(简称 NCDC NOAA),这些数据按行并以 ASCII 格式存储,其中每一行是一条记录. 下面我们展示一行采样数据,其中重要的字段被突出显示.该行数据被分割成很多行以突出每个字段,但在实际文件中,这些字段被整合…
从hadoop框架与MapReduce模式中谈海量数据处理 前言 几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显兴奋,认为它们非常是神奇.而神奇的东西常能勾起我的兴趣.在看过介绍它们的文章或论文之后,认为Hadoop是一项富有趣味和挑战性的技术,且它还牵扯到了一个我更加感兴趣的话题:海量数据处理. 由此,近期凡是空暇时,便在看"Hadoop"."MapReduce""海量数据处理"这方面的论文.但在看论…
一.准备: eclipse,hadoop集群 注意:为了方便测试和修改,我用的是 windows 连接hadoop集群,这样在windows 下直接就能够执行 mapreduce 任务,方便程序调试.在 windows 下执行 mapreduce 任务需要安装相关插件,可以参考   windows连接hadoop集群下执行MapReduce任务 数据下载地址:数据下载 密码:idnx 二.分析 本案例的数据来自某搜索引擎开放出来的部分搜索数据,数据格式如下: 20111230104334    …
Hadoop解决大规模数据分布式计算的方案是MapReduce.MapReduce既是一个编程模型,又是一个计算框架.也就是说,开发人员必须基于MapReduce编程模型进行编程开发,然后将程序通过MapReduce计算框架分发到Hadoop集群中运行.我们先看一下作为编程模型的MapReduce. MapReduce编程模型 MapReduce是一种非常简单又非常强大的编程模型. 简单在于其编程模型只包含map和reduce两个过程,map的主要输入是一对<key , value>值,经过m…
MapReduce 计数器.最值: 计数器 数据集在进行MapReduce运算过程中,许多时候,用户希望了解待分析的数据的运行的运行情况.Hadoop内置的计数器功能收集作业的主要统计信息,可以帮助用户理解程序的运行情况,辅助用户诊断故障. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 18/12/28 10:37:46 INFO client.RMProxy: Connecting to Resourc…
MapReduce原理 MapRedcue采用‘分而治之’的思想,对大规模数据集的操作,分发给一个主节点下的各个分节点共同完成,然后通过整合各个节点的中间结果,得到最终结果.Mapreduce就是任务的分解,与结果的汇总 MapReduce任务机器有两个一个是jobTracker,另一个是TaskTracher,JobTracker用于调度的工作,TaskTracher用于执行工作,一个hadoop集群只有一个JobTracker. 在分布式计算中,MapReduce框架负责处理了并行编程中分布…