批大小、mini-batch、epoch的含义】的更多相关文章

每次只选取1个样本,然后根据运行结果调整参数,这就是著名的随机梯度下降(SGD),而且可称为批大小(batch size)为 1 的 SGD. 批大小,就是每次调整参数前所选取的样本(称为mini-batch或batch)数量: 如果批大小为N,每次会选取N个样本,分别代入网络,算出它们分别对应的参数调整值,然后将所有调整值取平均,作为最后的调整值,以此调整网络的参数. 如果批大小N很大,例如和全部样本的个数一样,那么可保证得到的调整值很稳定,是最能让全体样本受益的改变. 如果批大小N较小,例如…
import numpy as np from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances import matplotlib.pyplot as plt import matplotlib as mpl from cycler import cycler from .tools import discret…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
BN是由Google于2015年提出,这是一个深度神经网络训练的技巧,它不仅可以加快了模型的收敛速度,而且更重要的是在一定程度缓解了深层网络中"梯度弥散"的问题,从而使得训练深层网络模型更加容易和稳定.所以目前BN已经成为几乎所有卷积神经网络的标配技巧了. 从字面意思看来Batch Normalization(简称BN)就是对每一批数据进行归一化,确实如此,对于训练中某一个batch的数据{x1,x2,...,xn},注意这个数据是可以输入也可以是网络中间的某一层输出.在BN出现之前,…
之前在几篇博客中说到了权重共享,但都觉得不够全面,这里做个专题,以后有新的理解都在此更新. 1. 减少运算只是锦上添花之前说到权重共享可以减少运算,是的,但这样说好像是可有可无,只是运算量大小的问题,其实不是可有可无的. 2. 权重共享的本质是特征提取之前说到权重就是模板,我们按照一定的模板来与样本进行比对,看看有没有与模板一致的外在表现(特征) 3. 权重共享使得模型泛化普通的神经网络输入是固定的,而权重共享可以使得输入不固定.比如很多张图像,每张图像上有个人脸,但是人脸在图像的不同位置,或者…
setlocal enabledelayedexpansion       延迟变量全称"延迟环境变量扩展",要理解这个东西,我们还得先理解一下什么叫扩展!       CMD在解释我们的命令的时候,首先会读取命令行一条完整的命令,然后对其进行一些命令格式的匹配操作,       看你所输入的命令格式是不是符合他的要求.       如果我们要在我们的命令中引用一些变量,那么我们如何让CMD在解释我们的命令时,能识别出这个变量呢?       这时我们就可以在变量名字两边加一个%号,如…
可以看出来除了KNN以外其他算法都是聚类算法 1.knn/kmeans/kmeans++区别 先给大家贴个简洁明了的图,好几个地方都看到过,我也不知道到底谁是原作者啦,如果侵权麻烦联系我咯~~~~ knn模型的三要素:距离度量(如何计算样本之间的距离).k值的选择(选择要判断的目标周围的几个样本去判断类别).分类决策规则(如何决定目标的类别) 图中所谓没有明显的训练过程就是给定目标样本,只需要直接计算其周围K个样本的类别,通过分类决策规则判断出来目标样本的类别就可以,不需要预先训练一个判别模型.…
​ 前言 这篇文章非常全面细致地介绍了Batch Size的相关问题.结合一些理论知识,通过大量实验,文章探讨了Batch Size的大小对模型性能的影响.如何影响以及如何缩小影响等有关内容. 本文来自公众号CV技术指南的技术总结系列 欢迎关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. 在本文中,我们试图更好地理解批量大小对训练神经网络的影响.具体而言,我们将涵盖以下内容: 什么是Batch Size? 为什么Batch Size很重要? 小批量和大批量如何凭…
Pytorch入门随手记 什么是Pytorch? Pytorch是Torch到Python上的移植(Torch原本是用Lua语言编写的) 是一个动态的过程,数据和图是一起建立的. tensor.dot(tensor1,tensor2)//tensor各个对应位置相乘再相加 print(net)可以输出网络结构 Pytorch的动态性:网络参数可以有多个不固定的,例如: 来源:https://morvanzhou.github.io/tutorials/machine-learning/torch…
一.Kafka设计原理参考: http://blog.csdn.net/suifeng3051/article/details/48053965?locationNum=2 http://www.cnblogs.com/metoy/p/4452124.html 二.常见问题,以及解决方法: http://www.tuicool.com/articles/FNbQbeq 三.Kafka官方指导文档(Producer): http://kafka.apache.org/documentation.h…
[学习源]Tutorials > Deep Learning with PyTorch: A 60 Minute Blitz > Training a Classifier   本文相当于对上面链接教程中自认为有用部分进行的截取.翻译和再注释.便于日后复习.修正和补充. 边写边查资料的过程中猛然发现这居然有中文文档--不过中文文档也是志愿者翻译的,仅仅是翻译,也没有对知识点的扩充,不耽误我写笔记.这篇笔记就继续写下去吧.附PyTorch 中文教程 & 文档 > 训练分类器 一.准…
深度学习的优化算法,说白了就是梯度下降.每次的参数更新有两种方式. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度.这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降. 另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent.这个方法速度比较快,但是收敛性能不太好,可能在最优点附近…
一文读懂神经网络训练中的Batch Size,Epoch,Iteration 作为在各种神经网络训练时都无法避免的几个名词,本文将全面解析他们的含义和关系. 1. Batch Size 释义:批大小,即单次训练使用的样本数 为什么需要有 Batch_Size :batch size 的正确选择是为了在内存效率和内存容量之间寻找最佳平衡. Batch size调参经验总结: 相对于正常数据集,如果Batch_Size过小,训练数据就会非常难收敛,从而导致underfitting. 增大Batch_…
深度学习的优化算法,说白了就是梯度下降.每次的参数更新有两种方式. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度.这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降. 另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent.这个方法速度比较快,但是收敛性能不太好,可能在最优点附近…
深度学习中经常看到epoch. iteration和batchsize,下面按自己的理解说说这三个的区别: (1)batchsize:批大小.在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练: (2)iteration:1个iteration等于使用batchsize个样本训练一次: (3)epoch:1个epoch等于使用训练集中的全部样本训练一次: 举个例子,训练集有1000个样本,batchsize=10,那么: 训练完整个样本集需要: 100次iter…
http://blog.csdn.net/leonwei/article/details/41942157 批渲染(Batch) batch render 是大部分引擎提高渲染效率的方法,基本原理就是通过将一些渲染状态一致的物体合成一个大物体,一次提交给gpu进行绘制,如果不batch的话,就要提交给很多次,这可以显著的节省drawcall,实际上这主要节省了cpu的时间,cpu从提交多次到提交一次,对gpu来说也不用多次切换渲染状态.当然能batch的前提一定是渲染状态一致的一组物体. Uni…
Inception V2网络中的代表是加入了BN(Batch Normalization)层,并且使用 2个 3*3卷积替代 1个5*5卷积的改进版,如下图所示: 其特点如下: 学习VGG用2个 3*3卷积代替 Inception V1中的 5*5大卷积.这样做在减少参数(3*3*2+2 –> 5*5+1)的同时可以建立更多的非线性变换,增强网络对特征的学习能力.如下图所示,2个 3*3卷积的效果与一个 5*5 卷积的效果类似: 在 Inception V1中加入BN层,以减少 Internal…
只有在数据很庞大的时候(在机器学习中,几乎任何时候都是),我们才需要使用 epochs,batch size,迭代这些术语,在这种情况下,一次性将数据输入计算机是不可能的.因此,为了解决这个问题,我们需要把数据分成小块,一块一块的传递给计算机,在每一步的末端更新神经网络的权重,拟合给定的数据. EPOCH 当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一个 epoch. 然而,当一个 epoch 对于计算机而言太庞大的时候,就需要把它分成多个小块. 为什么要使用多于一个 epo…
Batch Normalization,拆开来看,第一个单词意思是批,出现在梯度下降的概念里,第二个单词意思是标准化,出现在数据预处理的概念里. 我们先来看看这两个概念. 数据预处理 方法很多,后面我会在其他博客中专门讲,这里简单回忆下 归一化,x-min/max-min, 标准化,包括标准差标准化,x-mean/std,极差标准化,x-mean/(max-min), 中心化,x-mean, 白化,pac-->归一化 梯度下降 梯度下降中 mini batch sgd 是比 sgd 更好的一种方…
batch 深度学习的优化算法,说白了就是梯度下降.每次的参数更新有两种方式. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度.这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降. 另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent.这个方法速度比较快,但是收敛性能不太好,可能…
Batch Normalization(批量标准化,简称BN)是近些年来深度学习优化中一个重要的手段.BN能带来如下优点: 加速训练过程: 可以使用较大的学习率: 允许在深层网络中使用sigmoid这种易导致梯度消失的激活函数: 具有轻微地正则化效果,以此可以降低dropout的使用. 但为什么BN能够如此有效?让我们来一探究竟. 一.Covariate Shift Convariate shift是BN论文作者提出来的概念,其意是指具有不同分布的输入值对深度网络学习的影响.举个例子,假设我们有…
目录 动机 单层视角 多层视角 什么是Batch Normalization Batch Normalization的反向传播 Batch Normalization的预测阶段 Batch Normalization的作用 几个问题 卷积层如何使用BatchNorm? 没有scale and shift过程可不可以? BN层放在ReLU前面还是后面? BN层为什么有效? 参考 博客:blog.shinelee.me | 博客园 | CSDN 动机 在博文<为什么要做特征归一化/标准化? 博客园…
pytorch1.0批训练神经网络 import torch import torch.utils.data as Data # Torch 中提供了一种帮助整理数据结构的工具, 叫做 DataLoader, 能用它来包装自己的数据, 进行批训练. torch.manual_seed(1) # reproducible # 批训练的数据个数 BATCH_SIZE = 5 BATCH_SIZE = 8 x = torch.linspace(1, 10, 10) # this is x data (…
batch 概念:训练时候一批一批的进行正向推导和反向传播.一批计算一次loss mini batch:不去计算这个batch下所有的iter,仅计算一部分iter的loss平均值代替所有的. 以下来源:知乎 作者:陈志远 链接:https://zhuanlan.zhihu.com/p/83626029著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. (1) 不考虑bn的情况下,batch size的大小决定了深度学习训练过程中的完成每个epoch所需的时间和每次迭代(ite…
深度学习中经常看到epoch. iteration和batchsize,下面按自己的理解说说这三个的区别: (1)batchsize:批大小.在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练:(2)iteration:1个iteration等于使用batchsize个样本训练一次:(3)epoch:1个epoch等于使用训练集中的全部样本训练一次: 举个例子,训练集有1000个样本,batchsize=10,那么:训练完整个样本集需要:100次iteratio…
系统架构.自底向上,设备层.网络层.数据操作层.图计算层.API层.应用层.核心层,设备层.网络层.数据操作层.图计算层.最下层是网络通信层和设备管理层.网络通信层包括gRPC(google Remote Procedure Call Protocol)和远程直接数据存取(Remote Direct Memory Access,RDMA),分布式计算需要.设备管理层包手包括TensorFlow分别在CPU.GPU.FPGA等设备上的实现.对上层提供统一接口,上层只需处理卷积等逻辑,不需要关心硬件…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在分布式训练时,提高计算通信占比是提高计算加速比的有效手段,当网络通信优化到一定程度时,只有通过增加每个worker上的batch size来提升计算量,进而提高计算通信占比.然而一直以来Deep Learning模型在训练时对Batch Size的选择都是异常敏感的,通常的经验是Large Batch Size会使收敛性变差,而相对小一点的Batch Size才能收敛的更好…
转自: https://blog.csdn.net/qq_27923041/article/details/74927398 深度学习中经常看到epoch. iteration和batchsize,下面按自己的理解说说这三个的区别: (1)batchsize:批大小.在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练: (2)iteration:1个iteration等于使用batchsize个样本训练一次: (3)epoch:1个epoch等于使用训练集中的全…
本文翻译节选自1998-Efficient BackProp, Yann LeCun et al.. 4.1 随机VS批训练 每一次迭代, 传统训练方式都需要遍历所有数据集来计算平均梯度. 批训练也同样. 但你也可以使用随机训练的方法: 每次随机选择一个样本$\{Z^t, D^t\}$. 使用它来计算对应的梯度从而更新权值: $W(t+1) = W(t) - \eta \frac{\partial E^t}{\partial W}$ (11). 这种估计梯度的方式是有噪的, 可能不会每次迭代权值…
import torch import torch.utils.data as Data torch.manual_seed(1) # reproducible # BATCH_SIZE = 5 BATCH_SIZE = 8 # 每次使用8个数据同时传入网路 x = torch.linspace(1, 10, 10) # this is x data (torch tensor) y = torch.linspace(10, 1, 10) # this is y data (torch tens…