首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Solution -「UOJ #450」复读机
】的更多相关文章
Solution -「UOJ #450」复读机
\(\mathcal{Description}\) Link. 求从 \(m\) 种颜色,每种颜色无限多的小球里选 \(n\) 个构成排列,使得每种颜色出现次数为 \(d\) 的倍数的排列方案数,对 \(19491001\) 取模. \(n\le10^9\), \(m\le10^3\),\(d=3\): \(m\le5\times10^5\),\(d\le2\). \(\mathcal{Solution}\) 分 \(d=1,2,3\) 求解. 当 \(d=1\),每个位置…
Solution -「UOJ #46」玄学
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\) 和 \(q\) 次操作,操作内容如下: 给出 \(l,r,k,b\),声明一个修改方案,表示 \(\forall i\in[l,r],~a_i\leftarrow (ka_i+b)\bmod m\). 给出 \(l,r,x\),求将第 \(l\) 到第 \(r\) 个修改方案作用于序列时,\(a_x\) 的值. 强制在线,\(n\le10^5\),\(q\le6\times10^5\).…
Solution -「UOJ #87」mx 的仙人掌
\(\mathcal{Description}\) Link. 给出含 \(n\) 个结点 \(m\) 条边的仙人掌图.\(q\) 次询问,每次询问给出一个点集 \(S\),求 \(S\) 内两两结点最短距离的最大值. \(n,\sum|S|\le3\times10^5\). \(\mathcal{Solution}\) 圆方树 + 虚树 = 虚圆方树! 首先,考虑对于整个仙人掌怎么求答案:建出圆方树,DP 记录子树最深结点深度,在方点处单调队列合并圆儿子的两条链贡献答案即可…
UOJ #450「集训队作业2018」复读机
UOJ #450 题意 有$ k$台复读机,每时每刻有且只有一台复读机进行复读 求$ n$时刻后每台复读机的复读次数都是$ d$的倍数的方案数 $ 1\leq d \leq 3,k \leq 5·10^5,n \leq 10^9$ 当$ d=3$时$ k \leq 10^3$ 题解 $ d=1$的略过 对复读机构建生成函数 发现这是指数生成函数 即我们要计算的是$$(\sum_{i=0}^n[d|i]\frac{x^i}{i!})^k[x^n]=(\sum_{i=0}^n[d|i]e^x)^k…
Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率随机.求 \(\{b_n\}\) 中 LIS(最长上升子序列)的期望长度.对 \(10^9+7\) 取模. \(n\le6\),\(a_i\le10^9\). \(\mathcal{Solution}\) 欺负这个 \(n\) 小得可爱,直接 \(\mathcal O(n!)\) 枚举 \(…
Solution -「UNR #5」「UOJ #671」诡异操作
\(\mathcal{Desciprtion}\) Link. 给定序列 \(\{a_n\}\),支持 \(q\) 次操作: 给定 \(l,r,v\),\(\forall i\in[l,r],~a_i\leftarrow\lfloor\frac{a_i}{v}\rfloor\): 给定 \(l,r,v\),\(\forall i\in[l,r],~a_i\leftarrow a_i\otimes v\),其中 \(\otimes\) 表示二进制按位与: 给定 \(l,r\),求 \(\s…
Solution -「JOISC 2020」「UOJ #509」迷路的猫
\(\mathcal{Decription}\) Link. 这是一道通信题. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图与两个限制 \(A,B\). 程序 Anthony 需要用 \(0\sim A-1\) 共 \(A\) 中颜色为无向图的每条边染色. 程序 Catherine 需要帮助一只猫行走:已知猫所在结点邻接每种颜色的边的数量,你需要告诉猫走哪种颜色的边(但不能让它走特定某条),并保证猫从起点 \(s\) 到 \(0\) 所走的距离不超过两点最短距离…
Solution -「CERC 2016」「洛谷 P3684」机棚障碍
\(\mathcal{Description}\) Link. 给一个 \(n\times n\) 的网格图,每个点是空格或障碍.\(q\) 次询问,每次给定两个坐标 \((r_1,c_1),(r_2,c_2)\),问最大的正方形边长 \(k\),满足 \(k\) 是奇数,且中心点在 \((r_1,c_1)\) 的正方形能够移动成为中心点在 \((r_2,c_2)\) 的正方形. \(n\le1000\),\(q\le3\times10^5\). \(\mathcal{Solutio…
Solution -「UR #21」「UOJ #632」挑战最大团
\(\mathcal{Description}\) Link. 对于简单无向图 \(G=(V,E)\),定义它是"优美"的,当且仅当 \[\forall\{a,b,c,d\}\sube V,((a,b),(b,c),(c,d)\in E)\Rightarrow(a,c)\in E\lor(b,d)\in E\lor(a,d)\in E \] 给定一个"优美"的简单无向图 \(G\),对于所有 \(i\in[1,n]\),求有多少个 \(S\sube V\…
Solution -「UR #2」「UOJ #32」跳蚤公路
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的带权有向图,每条边还有属性 \(s\in\{-1,0,1\}\).对于每个 \(u\in[1,n]\),求有多少个 \(x\in\mathbb Z\),使得图上所有属性为 \(-1\) 的边权 \(-x\),为 \(0\) 的不变,为 \(1\) 的 \(+x\) 后,从 \(1\) 走到 \(u\) 的任意路径不经过负环.若存在无穷个 \(x\),输出 \(-1\). \(…