目录 概 主要内容 (4)式的求解 超参数 Tsiligkaridis T., Roberts J. Second Order Optimization for Adversarial Robustness and Interpretability. arXiv preprint axXiv 2009.04923, 2020. 概 也算是一种对抗训练吧, 有区别的是构造对抗样本的方式, 以及用的是惩罚项而非仅用对抗样本训练. 主要内容 考虑干净样本\(x\)和扰动\(v\), 则我们自然希望 \…
目录 概 主要内容 代码 Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via channel-wise activation suppressing. In International Conference on Learning Representations (ICLR), 2021. Yan H., Zhang J., Niu G., Feng J., Tan V.,…
目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chiang M. and Mittal P. Improving adversarial robustness using proxy Distributions. arXiv preprint arXiv: 2104.09425, 2021. 概 本文利用GAN生成数据, 并利用这些数据进行对抗训练,…
目录 概 主要内容 Auto-PGD Momentum Step Size 损失函数 AutoAttack Croce F. & Hein M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In International Conference on Machine Learning (ICML), 2020. 概 作者改进了PGD攻击方法, 并…
目录 概 主要内容 定理1 代码 Cohen J., Rosenfeld E., Kolter J. Certified Adversarial Robustness via Randomized Smoothing. International Conference on Machine Learning (ICML), 2019. @article{cohen2019certified, title={Certified Adversarial Robustness via Randomiz…
目录 概 主要内容 符号 MART Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting Misclassified Examples[C]. international conference on learning representations, 2020. @article{wang2020improving, title={Improving Adversarial Robustn…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com/ssharmin/spikingNN-adversarial-attack Abstract 在最近对可信任的神经网络的探索中,我们提出了一个潜在的候选,即脉冲神经网络(SNN)之于对抗攻击的内在鲁棒性.在这项工作中,我们证明对CIFAR数据集上的深度VGG和ResNet结构,在基于梯度的攻击下,…
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gaussian Mixture Model (GMM) SelectiveNet Combined Abstention Robustness Learning (CARL) Adversarial Training with a Rejection Option Energy-based Out-of…
Research Guide: Pruning Techniques for Neural Networks 2019-11-15 20:16:54 Original: https://heartbeat.fritz.ai/research-guide-pruning-techniques-for-neural-networks-d9b8440ab10d Pruning is a technique in deep learning that aids in the development of…
ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizona, USA ICLR 2013 Workshop Track Accepted for Oral Presentation Zero-Shot Learning Through Cross-Modal Transfer Richard Socher, Milind Ganjoo, Hamsa Sr…